910 resultados para Batch Proof, Verification of Re-encryption, Verification of Decryption, Mix Network
Resumo:
The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.
Resumo:
Bluetooth wireless technology is a robust short-range communications system designed for low power (10 meter range) and low cost. It operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and it employs two techniques for minimizing interference: a frequency hopping scheme which nominally splits the 2.400 - 2.485 GHz band in 79 frequency channels and a time division duplex (TDD) scheme which is used to switch to a new frequency channel on 625 μs boundaries. During normal operation a Bluetooth device will be active on a different frequency channel every 625 μs, thus minimizing the chances of continuous interference impacting the performance of the system. The smallest unit of a Bluetooth network is called a piconet, and can have a maximum of eight nodes. Bluetooth devices must assume one of two roles within a piconet, master or slave, where the master governs quality of service and the frequency hopping schedule within the piconet and the slave follows the master’s schedule. A piconet must have a single master and up to 7 active slaves. By allowing devices to have roles in multiple piconets through time multiplexing, i.e. slave/slave or master/slave, the Bluetooth technology allows for interconnecting multiple piconets into larger networks called scatternets. The Bluetooth technology is explored in the context of enabling ad-hoc networks. The Bluetooth specification provides flexibility in the scatternet formation protocol, outlining only the mechanisms necessary for future protocol implementations. A new protocol for scatternet formation and maintenance - mscat - is presented and its performance is evaluated using a Bluetooth simulator. The free variables manipulated in this study include device activity and the probabilities of devices performing discovery procedures. The relationship between the role a device has in the scatternet and it’s probability of performing discovery was examined and related to the scatternet topology formed. The results show that mscat creates dense network topologies for networks of 30, 50 and 70 nodes. The mscat protocol results in approximately a 33% increase in slaves/piconet and a reduction of approximately 12.5% of average roles/node. For 50 node scenarios the set of parameters which creates the best determined outcome is unconnected node inquiry probability (UP) = 10%, master node inquiry probability (MP) = 80% and slave inquiry probability (SP) = 40%. The mscat protocol extends the Bluetooth specification for formation and maintenance of scatternets in an ad-hoc network.
Resumo:
PURPOSE: We report the clinical, morphological, and ultrastructural findings of 13 consecutively explanted opacified Hydroview(R) (hydrogel) intraocular lenses (IOLs). Our purpose was to provide a comprehensive account on the possible factors involved in late postoperative opacification of these IOLs. PATIENTS AND METHODS: Thirteen consecutive opacified hydrogel IOLs (Hydroview H 60 M, Bausch ; Lomb) were explanted due to the significant visual impairment they caused. The IOLs underwent macroscopical examination, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrophoresis for protein detection. Three unused control Hydroview IOLs served for comparison. RESULTS: Macroscopical examination showed a diffuse or localized grey-whitish opacification within the IOL optic. TEM confirmed the presence of lesions inside the optic in all the explanted IOLs and revealed 3 patterns of deep deposits: a) diffuse, thick, granular, electron-dense ones; b) small, thin, lattice-like ones, with prominent electron-lucent areas; and c) elongated electron-dense formations surrounded by electron-lucent halos. SEM showed surface deposits on four IOLs. EDS revealed oxygen and carbon in all IOLs and documented calcium, phosphorus, silicon and/or iron in the deposits. Two of the patients with iron in their IOLs had eye surgery prior to their phacoemulsification. Iron correlated well with the second TEM pattern of deep lesions, whereas calcium with the third TEM pattern. No protein bands were detected on electrophoresis. Control lenses did not show any ultrastructural or chemical abnormality. CONCLUSIONS: The present study supports the presence of chemical alterations inside the polymer of the optic in late postoperative opacification of Hydroview IOLs. This opacification does not follow a unique pathway but may present under different ultrastructular patterns depending on the responsible factors. Mechanical stress during surgery may initiate a sequence of events where ions such as calcium, phosphorus, silicon, and/or iron, participate in a biochemical cascade that leads to gradual alteration of the polymer network. Intraocular inflammation due to previous operation may be a factor inducing opacification through increase of iron-binding capacity in the aqueous humour. Calcification accounts only partially for the opacification noted in this type of IOL.
Resumo:
This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess oculomotor deficits after a focal lesion using a variety of oculomotor paradigms, and to study the oculomotor consequences of the lesion in the chronic phase. Saccades are controlled by different cortical regions, which could be partially specialised in the triggering of a specific type of saccade. The division of saccades into reflexive visually guided saccades and intentional or volitional saccades corresponds to distinct regions of the neuronal network, which are involved in the control of such saccades. TMS allows to specifically interfere with the functioning of a region within an intact oculomotor network. TMS provides advantages in terms of temporal resolution, allowing to interfere with brain functioning in the order of milliseconds, thereby allowing to define the time course of saccade planning and execution. In the first part of the paper, we present an overview of the cortical structures important for saccade control, and discuss the pro's and con's of the different methodological approaches to study the cortical oculomotor network. In the second part, the functional network involved in reflexive and volitional saccades is presented. Finally, studies concerning recovery mechanisms after a lesion of the oculomotor cortex are discussed.
Resumo:
File system security is fundamental to the security of UNIX and Linux systems since in these systems almost everything is in the form of a file. To protect the system files and other sensitive user files from unauthorized accesses, certain security schemes are chosen and used by different organizations in their computer systems. A file system security model provides a formal description of a protection system. Each security model is associated with specified security policies which focus on one or more of the security principles: confidentiality, integrity and availability. The security policy is not only about “who” can access an object, but also about “how” a subject can access an object. To enforce the security policies, each access request is checked against the specified policies to decide whether it is allowed or rejected. The current protection schemes in UNIX/Linux systems focus on the access control. Besides the basic access control scheme of the system itself, which includes permission bits, setuid and seteuid mechanism and the root, there are other protection models, such as Capabilities, Domain Type Enforcement (DTE) and Role-Based Access Control (RBAC), supported and used in certain organizations. These models protect the confidentiality of the data directly. The integrity of the data is protected indirectly by only allowing trusted users to operate on the objects. The access control decisions of these models depend on either the identity of the user or the attributes of the process the user can execute, and the attributes of the objects. Adoption of these sophisticated models has been slow; this is likely due to the enormous complexity of specifying controls over a large file system and the need for system administrators to learn a new paradigm for file protection. We propose a new security model: file system firewall. It is an adoption of the familiar network firewall protection model, used to control the data that flows between networked computers, toward file system protection. This model can support decisions of access control based on any system generated attributes about the access requests, e.g., time of day. The access control decisions are not on one entity, such as the account in traditional discretionary access control or the domain name in DTE. In file system firewall, the access decisions are made upon situations on multiple entities. A situation is programmable with predicates on the attributes of subject, object and the system. File system firewall specifies the appropriate actions on these situations. We implemented the prototype of file system firewall on SUSE Linux. Preliminary results of performance tests on the prototype indicate that the runtime overhead is acceptable. We compared file system firewall with TE in SELinux to show that firewall model can accommodate many other access control models. Finally, we show the ease of use of firewall model. When firewall system is restricted to specified part of the system, all the other resources are not affected. This enables a relatively smooth adoption. This fact and that it is a familiar model to system administrators will facilitate adoption and correct use. The user study we conducted on traditional UNIX access control, SELinux and file system firewall confirmed that. The beginner users found it easier to use and faster to learn then traditional UNIX access control scheme and SELinux.
Resumo:
OBJECTIVE: The objective of this study was to assess predictors of residual shunts after percutaneous patent foramen ovale (PFO) closure with Amplatzer PFO occluder (AGA Medical Corporation, Golden Valley, MN, USA). METHODS: All percutaneous PFO closures, using Amplatzer PFO occluder performed at a tertiary center between May 2002 and August 2006, were reviewed. Follow-up, including saline contrast transesophageal echocardiography, was performed in all patients 6 months after the intervention. PATIENTS: A total of 135 procedures were performed. Mean age of the patients was 51 years. The indication for PFO closure was an ischemic cerebrovascular event in 92%, paradoxical systemic embolism in 4%, and a diving accident in 4%. Recurrent events prior to PFO closure were noted in 34%. A concomitant atrial septal aneurysm was present in 61%. RESULTS: At 6 months follow-up, a residual shunt was detected in 26 patients (19%). Residual shunts were more common in patients with an atrial septal aneurysm (27 vs. 8%, P= .01) and in patients treated with a 35-mm compared with a 25-mm device (39 vs. 15%, P= .01). A concomitant atrial septal aneurysm remained independently associated with residual shunts when controlled for body mass index, gender, age, atrial dimensions, and presence of a Chiari network (odds ratio 4.1, 95% confidence intervals 1.1-15.0). CONCLUSION: The presence of atrial septal aneurysms in patients undergoing percutaneous PFO closure with an Amplatzer PFO occluder significantly increases the rate of residual shunts at 6 months follow-up, even if 35-mm devices are used.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
Many reports have shown that malarial parasites can produce distinct morphological and molecular alterations in the membranes of the parasitized erythrocytes (l-8), but few studies have been carried out on nonparasitized erythrocytes of infected animals (9-11).We report here that the outer leaflet of the membrane bilayer of non parasitized erythrocytes contains significantly larger amounts of aminophospholipids (phosphatidylethanolamine (PE) and phosphatidylserine (PS), than the normal red cell membrane. This alteration in nonparasitized red cells is probably caused by Ca2+ -induced crosslinking of spectrin, and gradually disappears after chloroquine treatment. The external localization of PS in these cells together with defective structure of their cytoskeletal network provide a strong basis for the complications associated with malaria infection like thrombosis, infarction and severe anaemia.
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
Aims: As part of the EAPCI Young Initiative, the European Association of Percutaneous Cardiovascular Interventions (EAPCI) conducted a survey to address the educational needs of young interventional cardiologists. Methods and results: A questionnaire was distributed to all individuals registered in the ESC database aged <36 years with an interest in interventional cardiology. Nearly two-thirds of participants (60%) indicated that they had difficulty in finding a fellowship training position. The desire for a fellow's course at European level was expressed by 95%, while 94% were in favour of developing a network of young interventional cardiologists in Europe. More than three-quarters of respondents (79%) said they had had difficulty in obtaining funding to attend EuroPCR. Multiple difficulties were identified in setting up a research programme, two of the more frequent being problematic access to research networks and the difficulties of finding a mentor. Career orientation was identified as another issue, with more than half of respondents (59%) declaring they followed career options by chance. Conclusions: The survey underlines the need to fill a gap in order to address the needs of young interventional cardiologists. It may serve as a starting point for developing educational initiatives targeted at young interventional cardiologists.
Resumo:
One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Partnerships between Northern and Southern researchers are a powerful tool for studying problems of global change and for shaping development policies. North–South partnerships enable teams of researchers to focus on specific problems and to strengthen research capacities in developing countries. They also enable Southern researchers to contribute to their home countries as part of an international network. This issue of evidence for policy draws on recent publications from the NCCR North-South to illustrate how partnership benefits science and sustainable development.
Resumo:
Glucocorticoids (GC) are successfully applied in neonatology to improve lung maturation in preterm born babies. Animal studies show that GC can also impair lung development. In this investigation, we used a new approach based on digital image analysis. Microscopic images of lung parenchyma were skeletonised and the geometrical properties of the septal network characterised by analysing the 'skeletal' parameters. Inhibition of the process of alveolarisation after extensive administration of small doses of GC in newborn rats was confirmed by significant changes in the 'skeletal' parameters. The induced structural changes in the lung parenchyma were still present after 60 days in adult rats, clearly indicating a long lasting or even definitive impairment of lung development and maturation caused by GC. Conclusion: digital image analysis and skeletonisation proved to be a highly suited approach to assess structural changes in lung parenchyma.
Resumo:
Computational network analysis provides new methods to analyze the human connectome. Brain structural networks can be characterized by global and local metrics that recently gave promising insights for diagnosis and further understanding of neurological, psychiatric and neurodegenerative disorders. In order to ensure the validity of results in clinical settings the precision and repeatability of the networks and the associated metrics must be evaluated. In the present study, nineteen healthy subjects underwent two consecutive measurements enabling us to test reproducibility of the brain network and its global and local metrics. As it is known that the network topology depends on the network density, the effects of setting a common density threshold for all networks were also assessed. Results showed good to excellent repeatability for global metrics, while for local metrics it was more variable and some metrics were found to have locally poor repeatability. Moreover, between subjects differences were slightly inflated when the density was not fixed. At the global level, these findings confirm previous results on the validity of global network metrics as clinical biomarkers. However, the new results in our work indicate that the remaining variability at the local level as well as the effect of methodological characteristics on the network topology should be considered in the analysis of brain structural networks and especially in networks comparisons.