973 resultados para Banach Lattice
Resumo:
Let vv be a weight sequence on ZZ and let ψ,φψ,φ be complex-valued functions on ZZ such that φ(Z)⊂Zφ(Z)⊂Z. In this paper we study the boundedness, compactness and weak compactness of weighted composition operators Cψ,φCψ,φ on predual Banach spaces c0(Z,1/v)c0(Z,1/v) and dual Banach spaces ℓ∞(Z,1/v)ℓ∞(Z,1/v) of Beurling algebras ℓ1(Z,v)ℓ1(Z,v).
Resumo:
This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.
Resumo:
The aim of this report is to discuss the method of determination of lattice-fluid binary interaction parameters by comparing well characterized immiscible blends and block copolymers of poly(methyl methacrylate) (PMMA) and poly(ϵ−caprolactone) (PCL). Experimental pressure-volume-temperature (PVT) data in the liquid state were correlated with the Sanchez—Lacombe (SL) equation of state with the scaling parameters for mixtures and copolymers obtained through combination rules of the characteristic parameters for the pure homopolymers. The lattice-fluid binary parameters for energy and volume were higher than those of block copolymers implying that the copolymers were more compatible due to the chemical links between the blocks. Therefore, a common parameter cannot account for both homopolymer blend and block copolymer phase behaviors based on current theory. As we were able to adjust all data of the mixtures with a single set of lattice-binary parameters and all data of the block copolymers with another single set we can conclude that both parameters did not depend on the composition for this system. This characteristic, plus the fact that the additivity law of specific volumes can be suitably applied for this system, allowed us to model the behavior of the immiscible blend with the SL equation of state. In addition, a discussion on the relationship between lattice-fluid binary parameters and the Flory–Huggins interaction parameter obtained from Leibler's theory is presented.
Resumo:
Proof-theoretic methods are developed and exploited to establish properties of the variety of lattice-ordered groups. In particular, a hypersequent calculus with a cut rule is used to provide an alternative syntactic proof of the generation of the variety by the lattice-ordered group of automorphisms of the real number chain. Completeness is also established for an analytic (cut-free) hypersequent calculus using cut elimination and it is proved that the equational theory of the variety is co-NP complete.
Resumo:
Mode of access: Internet.
Resumo:
"This group report is based on an article submitted to the Physical review."
Resumo:
Mode of access: Internet.
Resumo:
Wurtzite GaN epilayers bombarded at 300 K with 200 MeV Au-197(16+) ions are studied by a combination of transmission electron microscopy (TEM) and Rutherford backscattering/channeling spectrometry (RBS/C). Results reveal the formation of near-continuous tracks propagating throughout the entire similar to1.5-mum-thick GaN film. These tracks, similar to100 Angstrom in diameter, exhibit a large degree of structural disordering but do not appear to be amorphous. Throughout the bombarded epilayer, high-resolution TEM reveals planar defects which are parallel to the basal plane of the GaN film. The gross level of lattice disorder, as measured by RBS/C, gradually increases with increasing ion fluence up to similar to10(13) cm(-2). For larger fluences, delamination of the nitride film from the sapphire substrate occurs. Based on these results, physical mechanisms of the formation of lattice disorder in GaN in such a high electronic stopping power regime are discussed. (C) 2004 American Institute of Physics.
Resumo:
This paper presents a new low-complexity multicarrier modulation (MCM) technique based on lattices which achieves a peak-to-average power ratio (PAR) as low as three. The scheme can be viewed as a drop in replacement for the discrete multitone (DMT) modulation of an asymmetric digital subscriber line modem. We show that the lattice-MCM retains many of the attractive features of sinusoidal-MCM, and does so with lower implementation complexity, O(N), compared with DMT, which requires O(N log N) operations. We also present techniques for narrowband interference rejection and power profiling. Simulation studies confirm that performance of the lattice-MCM is superior, even compared with recent techniques for PAR reduction in DMT.
Resumo:
Statistical tests of Load-Unload Response Ratio (LURR) signals are carried in order to verify statistical robustness of the previous studies using the Lattice Solid Model (MORA et al., 2002b). In each case 24 groups of samples with the same macroscopic parameters (tidal perturbation amplitude A, period T and tectonic loading rate k) but different particle arrangements are employed. Results of uni-axial compression experiments show that before the normalized time of catastrophic failure, the ensemble average LURR value rises significantly, in agreement with the observations of high LURR prior to the large earthquakes. In shearing tests, two parameters are found to control the correlation between earthquake occurrence and tidal stress. One is, A/(kT) controlling the phase shift between the peak seismicity rate and the peak amplitude of the perturbation stress. With an increase of this parameter, the phase shift is found to decrease. Another parameter, AT/k, controls the height of the probability density function (Pdf) of modeled seismicity. As this parameter increases, the Pdf becomes sharper and narrower, indicating a strong triggering. Statistical studies of LURR signals in shearing tests also suggest that except in strong triggering cases, where LURR cannot be calculated due to poor data in unloading cycles, the larger events are more likely to occur in higher LURR periods than the smaller ones, supporting the LURR hypothesis.
Resumo:
The Lattice Solid Model has been used successfully as a virtual laboratory to simulate fracturing of rocks, the dynamics of faults, earthquakes and gouge processes. However, results from those simulations show that in order to make the next step towards more realistic experiments it will be necessary to use models containing a significantly larger number of particles than current models. Thus, those simulations will require a greatly increased amount of computational resources. Whereas the computing power provided by single processors can be expected to increase according to Moore's law, i.e., to double every 18-24 months, parallel computers can provide significantly larger computing power today. In order to make this computing power available for the simulation of the microphysics of earthquakes, a parallel version of the Lattice Solid Model has been implemented. Benchmarks using large models with several millions of particles have shown that the parallel implementation of the Lattice Solid Model can achieve a high parallel-efficiency of about 80% for large numbers of processors on different computer architectures.