958 resultados para Balance of payments
Resumo:
Background: The relationship between the immune response and red and white blood cell homeostasis is cited in literature, but no studies regarding the balance of these cell populations following maxillary bone-graft surgeries can be found. Aim: The aim of this study was to evaluate the possible impairments in the blood cell balance following fresh-frozen allogeneic bone-graft augmentation procedures in patients who needed maxillary reconstruction prior to implants. Material and Methods: From 33 patients elected to onlay bone grafting procedures, 20 were treated with fresh-frozen bone allografts and 13 with autologous bone grafts. Five blood samples were collected from each patient in a 6-month period (baseline: 14, 30, 90, and 180 days postsurgery), and the hematological parameters (erythrogram, leukogram, and platelets count) were accessed. Results: All evaluated parameters were within the reference values accepted as normal, and significant differences were found for the eosinophils count when comparing the treatments (30 days, p=.035) and when comparing different periods of evaluation (allograft-treated group, baseline×180 days, p≤.05 and 90×180 days, p≤.01; autograft-treated group, 30×90 days, p≤.05 and 30×180 days, p≤.05). Conclusions: Both autologous and fresh-frozen allogeneic bone grafts did not cause any impairment in the red and white blood cell balance, based on quantitative hemogram analysis, in patients subjected to maxillary reconstruction. © 2011 Wiley Periodicals, Inc.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Axillary bud outgrowth determines shoot architecture and is under the control of endogenous hormones and a fine-tuned gene-expression network, which probably includes small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets within axillary buds are largely unknown. Here, we employed sRNA next-generation sequencing as well as computational and gene-expression analysis to identify and quantify sRNAs and their targets in vegetative axillary buds of the biofuel crop sugarcane (Saccharum spp.). Computational analysis allowed the identification of 26 conserved miRNA families and two putative novel miRNAs, as well as a number of trans-acting small interfering RNAs. sRNAs associated with transposable elements and protein-encoding genes were similarly represented in both inactive and developing bud libraries. Conversely, sequencing and quantitative reverse transcription-PCR results revealed that specific miRNAs were differentially expressed in developing buds, and some correlated negatively with the expression of their targets at specific stages of axillary bud development. For instance, the expression patterns of miR159 and its target GAMYB suggested that they may play roles in regulating abscisic acid-signalling pathways during sugarcane bud outgrowth. Our work reveals, for the first time, differences in the composition and expression profiles of diverse sRNAs and targets between inactive and developing vegetative buds that, together with the endogenous balance of specific hormones, may be important in regulating axillary bud outgrowth. © 2013 © The Author(2) [2013].
Resumo:
This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.
Resumo:
The primary teeth are essential for bone development and establishment of the arches on occlusion. Thus, the congenitally absence of teeth may trigger a shift in the balance of the occlusion, promoting disharmony in the structures of the maxilla-mandibular system. However, some interventions are possible to be performed in these cases even in pediatric patients, to redirect growth, preventing growth deviations and reestablishing the aesthetic. The aim of this paper is to report the treatment of a 4-year-old child presenting congenitally absence of mandibular central and lateral incisors and maxilla lateral incisors, which consequently compromises aesthetics, occlusal function, and the development and the functional growth of the bones. The oral rehabilitation was performed with an adhesive partial denture, which was able to restore the aesthetic and the occlusal function, therefore being a viable alternative in the treatment of this patient of little age.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ingestion of probiotic lactic acid bacteria has been evaluated and noted that it has an effect on the balance of desirable microbiota in the gastrointestinal tract. Lactobacillus gasseri demonstrates good survival in the gastrointestinal tract, and it has been associated with a variety of probiotic activities and roles, including the reduction of fecal mutagenic enzymes, the production of bacteriocins and the stimulation of macrophages immunomodulation. The aim of the study was to evaluate the effects of a pool of L. gasseri strains isolated from the feces of breastfed infants added in the human milk of healthy women. The milk was both pasteurized and unpasteurized, to verify the cell cytotoxicity of macrophages and to quantify the production of immunologic mediators such as IL-4, IL-6, IFN-g, TNF-a, NO and oxygen intermediary compounds (H2O2). The administration of raw human milk and pasteurized human milk to infants is a regular, encouraged practice in units of intensive therapy (UITs) and our present investigation verified the beneficial effect of addition of a pool of L. gasseri to pasteurized human milk (PHML). Our results show that probiotic supplementation helped to maintain cell viability, reduced IL-6 and IFN-γ production and stimulated TNF-α, NO, H2O2, IL-4 production. Nevertheless, the results indicate that the addition of lactobacillus to human milk was not a determinant in the production of TNF-α. L. gasseri added to breast milk did not present a cytotoxic risk, and the addition of L. gasseri to pasteurized milk of human milk bank would benefit newborns that depend on milk banks for the colonization of more desirable microbiota.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)