883 resultados para BISEXUAL DISPERSAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: i) how will species distributions respond to climate change? ii) how will species movement affect recipient ecosystems? and iii) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait-based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life-history and demography, the stage in the colonisation process (e.g., spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of "when to intervene?" and "what to do?" which call for a better understanding of the ecological processes and social values associated with changing ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (similar to 9%) compared to the contribution of each predictor set individually (similar to 20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the risk of transmission of vector-borne diseases, regular updates of the geographic distribution of insect vectors are required. In the archipelago of Cape Verde, nine mosquito species have been reported. Of these, four are major vectors of diseases that have been present in the archipelago: yellow fever, lymphatic filariasis, malaria and, currently, an outbreak of dengue. In order to assess variation in mosquito biodiversity, we have carried out an update on the distribution of the mosquito species in Cape Verde, based on an enquiry of 26 unpublished technical reports (1983-2006) and on the results of an entomological survey carried out in 2007. Overall, there seems to be a general trend for an expansion of biological diversity in the islands. Mosquito species richness was negatively correlated with the distance of the islands from the mainland but not with the size of the islands. Human- and/or sporadic climatic-mediated events of dispersal may have contributed to a homogenization of species richness regardless of island size but other ecological factors may also have affected the mosquito biogeography in the archipelago. An additional species, Culex perexiguus, was collected for the first time in the archipelago during the 2007 survey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last three decades, the spiralling whitefly (Aleurodicus dispersus) has become an important international pest. The movement of plants and parts of plants (such as fruits) in international trade and tourism, and by natural dispersal, has favoured its introduction to new areas. In common with others whiteflies of economic importance, the immature and adult stages cause direct feeding damage by piercing and sucking of sap from foliage, and indirect damage following the accumulation all over host plants of honeydew and waxy flocculent material produced by the insects. Spiralling whitefly is a pest of tropical and subtropical crops, and highly polyphagous. Up to the 1970s, it had been recorded on 44 genera of plants, belonging to 26 botanical families (Mound & Halsey, 1978). This situation changed with the dispersal of the pest to new areas. Nowadays, the spiralling whitefly is one of the major pest of vegetable, ornamental and fruit crops around the globe (Lambkin, 1999). Important host crops include: banana (Musa sapientum), Citrus spp., coconut (Cocos nocifera), eggplant (Solanum melanogena), guava (Psidium guajava), Hibiscus rosa sinensis, Indian almond (Terminalia catappa), papya (Carica papaya), Rosa sp. and tomato (Lycopersicon esculentum) (Saminathan & Jayaraj, 2001). Spiralling whitefly has its origin in the tropical Americas, including Brazil. Although the pest has been recorded only once in Brasil, in the 1920s in the state of Bahia (Bondar, 1923), it now has official quarantine status because of its economic importance. In the Cape Verte Islands, on the West African coast, the pest was initially introduced in the first half of 2000; it has since become established, reaching urban, natural and agricultural areas of the islands that constitute the archipelago. Since then, the pest has been causing damage to many native plants, ornamentals and cultivated food crops (Anon., 2001; Monteiro, 2004). The present study was done in order to produce an inventory of the most common host plants of spiralling whitefly in this new habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blowflies utilize discrete and ephemeral sites for breeding and larval nutrition. After the exhaustion of food, the larvae begin dispersing to search for sites to pupate or to additional food source, process referred as postfeeding larval dispersal. Some of the most important aspects of this process were investigated in Chrysomya megacephala, utilizing a circular arena to permit the radial dispersion of larvae from the center. To determinate the localization of each pupa, the arena was split in 72 equal sectors from the center. For each pupa, distance from the center of arena, weight and depth were determined. Statistical tests were performed to verify the relation among weight, depth and distance of burying for pupation. It was verified that the larvae that disperse farther are those with higher weights. The majority of individuals reached the depth of burying for pupation between 7 and 18 cm. The study of this process of dispersion can be utilized in the estimation of postmortem interval (PMI) for human corpses in medico-criminal investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les changements climatiques du Quaternaire ont eu une influence majeure sur la distribution et l'évolution des biota septentrionaux. Les Alpes offrent un cadre spatio-temporel bien étudié pour comprendre la réactivité de la flore et le potentiel d'adaptation d'une espèce végétale face aux changements climatiques. Certaines hypothèses postulent une diversification des espèces en raison de la disparition complète de la flore des Alpes et d'un isolement important des espèces dans des refuges méridionaux durant les dernières glaciations (Tabula Rasa). Une autre hypothèse stipule le maintien de poches de résistance pour la végétation au coeur des Alpes (Nunataks). Comme de nombreuses espèces végétales présentant un grand succès écologique semblent avoir réagi aux glaciations par la multiplication de leur génome (autopolyploïdie), leur étude en milieu naturel devrait permettre de comprendre les avantages inhérents à la polyploïdie. Biscutella laevigata est un modèle emblématique de biogéographie historique, diverses études ayant montré que des populations diploïdes sont actuellement isolées dans les zones restées déglacées durant le dernier maximum glaciaire, alors que des tétraploïdes ont recolonisé l'ensemble des zones alpines mises à nu par le retrait des glaciers. Si le contexte périglaciaire semble avoir favorisé ce jeune complexe autopolyploïde, les circonstances et les avantages de cette mutation génomique ne sont pas encore clairs. Y a-t-il eu de multiples événements de polyploïdisation ? Dans quelle mesure affecte(nt)il(s) la diversité génétique et le potentiel évolutif des polyploïdes ? Les polyploïdes ont-ils une grande flexibilité génomique, favorisant une radiation adaptative, ou doivent-ils leur succès à une grande plasticité écologique ? Cette étude aborde ces questions à différentes échelles spatiales et temporelles. L'échelle régionale des Alpes occidentales permet d'aborder les facteurs distaux (aspects historiques), alors que l'échelle locale cherche à appréhender les facteurs proximaux (mécanismes évolutifs). Dans les Alpes occidentales, des populations ont été densément échantillonnées et étudiées grâce à (1) leur cytotype, (2) leur appartenance taxonomique, (3) leur habitat et (4) des marqueurs moléculaires de l'ADN chloroplastique, en vue d'établir leurs affinités évolutives. Á l'échelle locale, deux systèmes de population ont été étudiés : l'un où les populations persistent en périphérie de l'aire de distribution et l'autre au niveau du front actif de colonisation, en marge altitudinale. Les résultats à l'échelle des Alpes occidentales révèlent les sites d'intérêt (refuges glaciaires, principales barrières et voies de recolonisation) pour une espèce représentative des pelouses alpines, ainsi que pour la biodiversité régionale. Les Préalpes ont joué un rôle important dans le maintien de populations à proximité immédiate des Alpes centrales et dans l'évolution du taxon, voire de la végétation. Il est aussi démontré que l'époque glaciaire a favorisé l'autopolyploïdie polytopique et la recolonisation des Alpes occidentales par des lignées distinctes qui s'hybrident au centre des Alpes, influençant fortement leur diversité génétique et leur potentiel évolutif. L'analyse de populations locales en situations contrastées à l'aide de marqueurs AFLP montre qu'au sein d'une lignée présentant une grande expansion, la diversité génétique est façonnée par des forces évolutives différentes selon le contexte écologique et historique. Les populations persistant présentent une dispersion des gènes restreinte, engendrant une diversité génétique assez faible, mais semblent adaptées aux conditions locales de l'environnement. À l'inverse, les populations colonisant la marge altitudinale sont influencées par les effets de fondation conjugués à une importante dispersion des gènes et, si ces processus impliquent une grande diversité génétique, ils engendrent une répartition aléatoire des génotypes dans l'environnement. Les autopolyploïdes apparaissent ainsi comme capables de persister face aux changements climatiques grâce à certaines facultés d'adaptation locale et de grandes capacités à maintenir une importante diversité génétique lors de la recolonisation post-glaciaire. Summary The extreme climate changes of the Quaternary have had a major influence on species distribution and evolution. The European Alps offer a great framework to investigate flora reactivity and the adaptive potential of species under changing climate. Some hypotheses postulate diversification due to vegetation removal and important isolation in southern refugia (Tabula Rasa), while others explain phylogeographic patterns by the survival of species in favourable Nunataks within the Alps. Since numerous species have successfully reacted to past climate changes by genome multiplication (autopolyploidy), studies of such taxa in natural conditions is likely to explain the ecological success and the advantages of autopolyploidy. Early cytogeographical surveys of Biscutella laevigata have shed light on the links between autopolyploidy and glaciations by indicating that diploids are now spatially isolated in never-glaciated areas, while autotetraploids have recolonised the zones covered by glaciers- during the last glacial maximum. A periglacial context apparently favoured this young autopolyploid complex but the circumstances and the advantages of this genomic mutation remain unclear. What is the glacial history of the B. laevigata autopolyploid complex? Are there multiple events of polyploidisation? To what extent do they affect the genetic diversity and the evolutionary potential of polyploids? Is recolonisation associated with adaptive processes? How does long-term persistence affect genetic diversity? The present study addresses these questions at different spatiotemporal scales. A regional survey at the Western Alps-scale tackles distal factors (evolutionary history), while local-scale studies explore proximal factors (evolutionary mechanisms). In the Western Alps, populations have been densely sampled and studied from the (1) cytotypic, (2) morphotaxonomic, (3) habitat point of views, as well as (4) plastid DNA molecular markers, in order to infer their relationships and establish the maternal lineages phylogeography. At the local scale, populations persisting at the rear edge and populations recolonising the attitudinal margin at the leading edge have been studied by AFLPs to show how genetic diversity is shaped by different evolutionary forces across the species range. The results at the regional scale document the glacial history of a widespread species, representative of alpine meadows, in a regional area of main interest (glacial refugia, main barriers and recolonisation routes) and points out to sites of interest for regional biodiversity. The external Alps have played a major role in the maintenance of populations near the central Alps during the Last Glacial Maximum and influenced the evolution of the species, and of vegetation. Polytopic autopolyploidy in different biogeographic districts is also demonstrated. The species has had an important and rapid radiation because recolonisation took place from different refugia. The subsequent recolonisation of the Western Alps was achieved by independent lineages that are presently admixing in the central Alps. The role of the Pennic summit line is underlined as a great barrier that was permeable only through certain favourable high-altitude passes. The central Alps are thus viewed as an important crossroad where genomes with different evolutionary histories are meeting and admixing. The AFLP analysis and comparison of local populations growing in contrasted ecological and historical situations indicate that populations persisting in the external Alps present restricted gene dispersal and low genetic diversity but seem in equilibrium with their environment. On the contrary, populations colonising the attitudinal margin are mainly influenced by founder effects together with great gene dispersal and genotypes have a nearly random distribution, suggesting that recolonisation is not associated with adaptive processes. Autopolyploids that locally persist against climate changes thus seem to present adaptive ability, while those that actively recolonise the Alps are successful because of their great capacity to maintain a high genetic diversity against founder effects during recolonisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three guilds of bruchid beetles oviposit on seeds at different times and in different ways, i. e., in these guilds some species only oviposit on fruits while on the plant (Guild A), other species only oviposit on seeds exposed in fruits while still on the plant (Guild B) and some only oviposit on seeds once they are exposed on the substrate (Guild C). It has been established that one plant species may be oviposited upon by all three guilds, some only by two guilds and some by only one guild. Before and after the inception of this concept many papers have been published that seem to establish that early oviposition behavior of bruchids was probably onto fruits where they burrowed through the fruit wall and fed on seeds (Guild A). Then, as evolution of the fruits developed for dispersal of seeds and possible escape from bruchid predation, bruchids developed to feed in seeds in various other ways (Guilds B and C). Our data show that about 78% of extant bruchids oviposit on fruits, and the other 22% with behavior of Guilds B and C. A review of these papers and new data on oviposition guilds and bruchid evolution are presented and discussed here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats. RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations. CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An equation is applied for calculating the expected persistence time of an unstructured population of the white-toothed shrew Crocidura russula from Preverenges, a suburban area in western Switzerland. Population abundance data from March and November between 1977 and 1988 were fit to the logistic density dependence model to estimate mean population growth rate as a function of population density. The variance in mean growth rate was approximated with two different models. The largest estimated persistence time was less than a few decades, the smallest less than 10 years. The results are sensitive to the magnitude of variance in population growth rate. Deviations from the logistic density dependence model in November are quite well explained by weather variables but those in March are uncorrelated with weather variables. Variability in population growth rates measured in winter months may be better explained by behavioural mechanisms. Environmental variability, dispersal of juveniles and refugia within the range of the population may contribute to its long-term survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BIOMOD is a computer platform for ensemble forecasting of species distributions, enabling the treatment of a range of methodological uncertainties in models and the examination of species-environment relationships. BIOMOD includes the ability to model species distributions with several techniques, test models with a wide range of approaches, project species distributions into different environmental conditions (e.g. climate or land use change scenarios) and dispersal functions. It allows assessing species temporal turnover, plot species response curves, and test the strength of species interactions with predictor variables. BIOMOD is implemented in R and is a freeware, open source, package

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blowflies use discrete, ephemeral breeding sites for larval nutrition. After exhaustion of the food supply, the larvae disperse in search of sites to pupate or to seek other sources of food in a process known as post-feeding larval dispersal. In this study, some of the most important aspects of this process were investigated in larvae of the blowflies Chrysomya megacephala exposed to a variety of light: dark (LD) cycles (0:0 h, 12:12 h and 24:0 h) and incubated in tubes covered with vermiculite. For each pupa, the body weight and depth of burrowing were determined. Statistical tests were used to examine the relationship of depth of burrowing and body weight to photoperiod at which burrowing occurred. The study of burial behavior in post-feeding larval dispersing can be useful for estimating the postmortem interval (PMI) of human corpses in forensic medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cofoundresses of the desert fungus garden ant Acromyrmex versicolorexhibit a forager specialist who subsumes all foraging risk priorto first worker eclosion (Rissing et al. 1989). In an experimentdesigned to mimic a "cheater" who refuses foraging assignment whenher lot, cofoundresses delayed/failed to replace their forager,often leading to demise of their garden (Rissing et al. 1996). Thecheater on task assignment is harmed, but so too is the punisher,as all will die without a healthy garden. In this paper we studythrough simulation the cofoundress interaction with haploid, asexualgenotypes which either replace a cheater or not (punishment), underboth foundress viscosity (likely for A. versicolor) and randomassortment. We find replacement superior to punishment only whenthere is no foraging risk and cheating is not costly to groupsurvival. Generally, punishment is evolutionarily superior,especially as forager risk increases, under both forms of dispersal.