960 resultados para Averaging Theorem
Resumo:
We extend a well-known result, about the unit ball, by H. Alexander to a class of balanced domains in . Specifically: we prove that any proper holomorphic self-map of a certain type of balanced, finite-type domain in , is an automorphism. The main novelty of our proof is the use of a recent result of Opshtein on the behaviour of the iterates of holomorphic self-maps of a certain class of domains. We use Opshtein's theorem, together with the tools made available by finiteness of type, to deduce that the aforementioned map is unbranched. The monodromy theorem then delivers the result.
Resumo:
We theoretically explore quench dynamics in a finite-sized topological fermionic p-wave superconducting wire with the goal of demonstrating that topological order can have marked effects on such non-equilibrium dynamics. In the case studied here, topological order is reflected in the presence of two (nearly) isolated Majorana fermionic end bound modes together forming an electronic state that can be occupied or not, leading to two (nearly) degenerate ground states characterized by fermion parity. Our study begins with a characterization of the static properties of the finite-sized wire, including the behavior of the Majorana end modes and the form of the tunnel coupling between them; a transfer matrix approach to analytically determine the locations of the zero energy contours where this coupling vanishes; and a Pfaffian approach to map the ground state parity in the associated phase diagram. We next study the quench dynamics resulting from initializing the system in a topological ground state and then dynamically tuning one of the parameters of the Hamiltonian. For this, we develop a dynamic quantum many-body technique that invokes a Wick's theorem for Majorana fermions, vastly reducing the numerical effort given the exponentially large Hilbert space. We investigate the salient and detailed features of two dynamic quantities-the overlap between the time-evolved state and the instantaneous ground state (adiabatic fidelity) and the residual energy. When the parity of the instantaneous ground state flips successively with time, we find that the time-evolved state can dramatically switch back and forth between this state and an excited state even when the quenching is very slow, a phenomenon that we term `parity blocking'. This parity blocking becomes prominently manifest as non-analytic jumps as a function of time in both dynamic quantities.
Resumo:
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 x 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.
Resumo:
The classical Erdos-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdos-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k-gon with specified number of interior points and the chromatic variant. In this paper, we introduce the following two player game variant of the Erdos-Szekeres problem: Consider a two player game where each player playing in alternate turns, place points in the plane. The objective of the game is to avoid the formation of the convex k-gon among the placed points. The game ends when a convex k-gon is formed and the player who placed the last point loses the game. In our paper we show a winning strategy for the player who plays second in the convex 5-gon game and the empty convex 5-gon game by considering convex layer configurations at each step. We prove that the game always ends in the 9th step by showing that the game reaches a specific set of configurations.
Resumo:
In 1987, Kalai proved that stacked spheres of dimension d >= 3 are characterised by the fact that they attain equality in Barnette's celebrated Lower Bound Theorem. This result does not extend to dimension d = 2. In this article, we give a characterisation of stacked 2-spheres using what we call the separation index. Namely, we show that the separation index of a triangulated 2-sphere is maximal if and only if it is stacked. In addition, we prove that, amongst all n-vertex triangulated 2-spheres, the separation index is minimised by some n-vertex flag sphere for n >= 6. Furthermore, we apply this characterisation of stacked 2-spheres to settle the outstanding 3-dimensional case of the Lutz-Sulanke-Swartz conjecture that ``tight-neighbourly triangulated manifolds are tight''. For dimension d >= 4, the conjecture has already been proved by Effenberger following a result of Novik and Swartz. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the problem of energy-based, Bayesian spectrum sensing in cognitive radios under various fading environments. Under the well-known central limit theorem based model for energy detection, we derive analytically tractable expressions for near-optimal detection thresholds that minimize the probability of error under lognormal, Nakagami-m, and Weibull fading. For the Suzuki fading case, a generalized gamma approximation is provided, which saves on the computation of an integral. In each case, the accuracy of the theoretical expressions as compared to the optimal thresholds are illustrated through simulations.
Resumo:
A commuting triple of operators (A, B, P) on a Hilbert space H is called a tetrablock contraction if the closure of the set E = {(a(11),a(22),detA) : A = GRAPHICS] with parallel to A parallel to <1} is a spectral set. In this paper, we construct a functional model and produce a set of complete unitary invariants for a pure tetrablock contraction. In this construction, the fundamental operators, which are the unique solutions of the operator equations A - B* P = DPX1DP and B - A* P = DPX2DP where X-1, X-2 is an element of B(D-P) play a pivotal role. As a result of the functional model, we show that every pure tetrablock isometry (A, B, P) on an abstract Hilbert space H is unitarily equivalent to the tetrablock contraction (MG1*+G2z, MG2*+G1z, M-z) on H-DP*(2). (D), where G(1) and G(2) are the fundamental operators of (A*, B*, P*). We prove a Beurling Lax Halmos type theorem for a triple of operators (MF1*+F2z, MF2*+F1z, M-z), where epsilon is a Hilbert space and F-1, F-2 is an element of B(epsilon). We also deal with a natural example of tetrablock contraction on a functions space to find out its fundamental operators.
Resumo:
This paper analyses deviated linear cyclic pursuit in which an agent pursues its leader with an angle of deviation in both the continuous- and discrete-time domains, while admitting heterogeneous gains and deviations for the agents. Sufficient conditions for the stability of such systems, in both the domains, are presented in this paper along with the derivation of the reachable set, which is a set of points where the agents may converge asymptotically. The stability conditions are derived based on Gershgorin's theorem. Simulations validating the theoretical results presented in this paper are provided.
Resumo:
Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.
Resumo:
A triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and orientable. No such characterization of tightness was previously known for higher dimensional manifolds. In this paper, we prove that a triangulation of a closed 3-manifold is tight with respect to a field of odd characteristic if and only if it is neighbourly, orientable and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension three for fields of odd characteristic. Next let F be a field of characteristic two. It is known that, in this case, any neighbourly and stacked triangulation of a closed 3-manifold is F-tight. For closed, triangulated 3-manifolds with at most 71 vertices or with first Betti number at most 188, we show that the converse is true. But the possibility of the existence of an F-tight, non-stacked triangulation on a larger number of vertices remains open. We prove the following upper bound theorem on such triangulations. If an F-tight triangulation of a closed 3-manifold has n vertices and first Betti number beta(1), then (n - 4) (617n - 3861) <= 15444 beta(1). Equality holds here if and only if all the vertex links of the triangulation are connected sums of boundary complexes of icosahedra. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Resumo:
The effectiveness of Oliver & Pharr's (O&P's) method, Cheng & Cheng's (C&C's) method, and a new method developed by our group for estimating Young's modulus and hardness based on instrumented indentation was evaluated for the case of yield stress to reduced Young's modulus ratio (sigma(y)/E-r) >= 4.55 x 10(-4) and hardening coefficient (n) <= 0.45. Dimensional theorem and finite element simulations were applied to produce reference results for this purpose. Both O&P's and C&C's methods overestimated the Young's modulus under some conditions, whereas the error can be controlled within +/- 16% if the formulation was modified with appropriate correction functions. Similar modification was not introduced to our method for determining Young's modulus, while the maximum error of results was around +/- 13%. The errors of hardness values obtained from all the three methods could be even larger and were irreducible with any correction scheme. It is therefore suggested that when hardness values of different materials are concerned, relative comparison of the data obtained from a single standard measurement technique would be more practically useful. It is noted that the ranges of error derived from the analysis could be different if different ranges of material parameters sigma(y)/E-r and n are considered.
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.