946 resultados para Automatic merging of lexical resources
Resumo:
Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.
Resumo:
The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.
Resumo:
Online communities are prime sources of information. The Web is rich with forums and Question Answering (Q&A) communities where people go to seek answers to all kinds of questions. Most systems employ manual answer-rating procedures to encourage people to provide quality answers and to help users locate the best answers in a given thread. However, in the datasets we collected from three online communities, we found that half their threads lacked best answer markings. This stresses the need for methods to assess the quality of available answers to: 1) provide automated ratings to fill in for, or support, manually assigned ones, and; 2) to assist users when browsing such answers by filtering in potential best answers. In this paper, we collected data from three online communities and converted it to RDF based on the SIOC ontology. We then explored an approach for predicting best answers using a combination of content, user, and thread features. We show how the influence of such features on predicting best answers differs across communities. Further we demonstrate how certain features unique to some of our community systems can boost predictability of best answers.
Resumo:
Multinational companies (MNCs) are known to establish country-specific headquarters (CSHQs) or centres to create and transfer knowledge in order to better co-ordinate and control their operations, and also to share knowledge between affiliates both within and outside the country. This paper highlights the role played by the human resource (HR) function in Indian CSHQs. The analysis is based on interview and survey data from senior HR specialists in 74 foreign firms operating CSHQs in India. The study identifies the range of services that the Indian CSHQs' HR function provides to the local business units of the MNC. A high level of freedom from the MNCs' corporate headquarters to both develop and implement HR policies and practices is found. The CSHQ is found to be instrumental in the creation and dissemination of HR-related learning. The study also identifies the problems faced by the HR function operating with a CSHQ and the actions necessary to overcome these issues.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Latent topics derived by topic models such as Latent Dirichlet Allocation (LDA) are the result of hidden thematic structures which provide further insights into the data. The automatic labelling of such topics derived from social media poses however new challenges since topics may characterise novel events happening in the real world. Existing automatic topic labelling approaches which depend on external knowledge sources become less applicable here since relevant articles/concepts of the extracted topics may not exist in external sources. In this paper we propose to address the problem of automatic labelling of latent topics learned from Twitter as a summarisation problem. We introduce a framework which apply summarisation algorithms to generate topic labels. These algorithms are independent of external sources and only rely on the identification of dominant terms in documents related to the latent topic. We compare the efficiency of existing state of the art summarisation algorithms. Our results suggest that summarisation algorithms generate better topic labels which capture event-related context compared to the top-n terms returned by LDA. © 2014 Association for Computational Linguistics.
Resumo:
False friends are pairs of words in two languages that are perceived as similar but have different meanings. We present an improved algorithm for acquiring false friends from sentence-level aligned parallel corpus based on statistical observations of words occurrences and co-occurrences in the parallel sentences. The results are compared with an entirely semantic measure for cross-lingual similarity between words based on using the Web as a corpus through analyzing the words’ local contexts extracted from the text snippets returned by searching in Google. The statistical and semantic measures are further combined into an improved algorithm for identification of false friends that achieves almost twice better results than previously known algorithms. The evaluation is performed for identifying cognates between Bulgarian and Russian but the proposed methods could be adopted for other language pairs for which parallel corpora and bilingual glossaries are available.
Resumo:
In the global strategy for preservation genetic resources of farm animals the implementation of information technology is of great importance. In this regards platform independent information tools and approaches for data exchange are needed in order to obtain aggregate values for regions and countries of spreading a separate breed. The current paper presents a XML based solution for data exchange in management genetic resources of farm animals’ small populations. There are specific requirements to the exchanged documents that come from the goal of data analysis. Three main types of documents are distinguished and their XML formats are discussed. DTD and XML Schema for each type are suggested. Some examples of XML documents are given also.
Resumo:
Development-engineers use in their work languages intended for software or hardware systems design, and test engineers utilize languages effective in verification, analysis of the systems properties and testing. Automatic interfaces between languages of these kinds are necessary in order to avoid ambiguous understanding of specification of models of the systems and inconsistencies in the initial requirements for the systems development. Algorithm of automatic translation of MSC (Message Sequence Chart) diagrams compliant with MSC’2000 standard into Petri Nets is suggested in this paper. Each input MSC diagram is translated into Petri Net (PN), obtained PNs are sequentially composed in order to synthesize a whole system in one final combined PN. The principle of such composition is defined through the basic element of MSC language — conditions. While translating reference table is developed for maintenance of consistent coordination between the input system’s descriptions in MSC language and in PN format. This table is necessary to present the results of analysis and verification on PN in suitable for the development-engineer format of MSC diagrams. The proof of algorithm correctness is based on the use of process algebra ACP. The most significant feature of the given algorithm is the way of handling of conditions. The direction for future work is the development of integral, partially or completely automated technological process, which will allow designing system, testing and verifying its various properties in the one frame.
Resumo:
This paper describes the followed methodology to automatically generate titles for a corpus of questions that belong to sociological opinion polls. Titles for questions have a twofold function: (1) they are the input of user searches and (2) they inform about the whole contents of the question and possible answer options. Thus, generation of titles can be considered as a case of automatic summarization. However, the fact that summarization had to be performed over very short texts together with the aforementioned quality conditions imposed on new generated titles led the authors to follow knowledge-rich and domain-dependent strategies for summarization, disregarding the more frequent extractive techniques for summarization.
Resumo:
In this paper, we propose an unsupervised methodology to automatically discover pairs of semantically related words by highlighting their local environment and evaluating their semantic similarity in local and global semantic spaces. This proposal di®ers from previous research as it tries to take the best of two different methodologies i.e. semantic space models and information extraction models. It can be applied to extract close semantic relations, it limits the search space and it is unsupervised.