901 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we study parameter estimation for time series with asymmetric α-stable innovations. The proposed methods use a Poisson sum series representation (PSSR) for the asymmetric α-stable noise to express the process in a conditionally Gaussian framework. That allows us to implement Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) methods. We further enhance the series representation by introducing a novel approximation of the series residual terms in which we are able to characterise the mean and variance of the approximation. Simulations illustrate the proposed framework applied to linear time series, estimating the model parameter values and model order P for an autoregressive (AR(P)) model driven by asymmetric α-stable innovations. © 2012 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The genus Sinocyclocheilus is distributed in Yun-Gui Plateau and its surrounding region only, within more than 10 cave species showing different degrees of degeneration of eyes and pigmentation with wonderful adaptations. To present, published morphological and molecular phylogenetic hypotheses of Sinocyclocheilus from prior works are very different and the relationships within the genus are still far from clear. We obtained the sequences of cytochrome b (cyt b) and NADH dehydrogenase subunit 4 (ND4) of 34 species within Sinocyclocheilus, which represent the most dense taxon sampling to date. We performed Bayesian mixed models analyses with this data set. Under this phylogenetic framework, we estimated the divergence times of recovered clades using different methods under relaxed molecular clock. Our phyloegentic results supported the monophyly of Sinocyclocheilus and showed that this genus could be subdivided into 6 major clades. In addition, an earlier finding demonstrating the polyphyletic of cave species and the most basal position of S. jii was corroborated. Relaxed divergence-time estimation suggested that Sinocyclocheilus originated at the late Miocene, about 11 million years ago (Ma), which is older than what have been assumed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The sediment sequence from Hasseldala port in southeastern Sweden provides a unique Lateglacial/early Holocene record that contains five different tephra layers. Three of these have been geochemically identified as the Borrobol Tephra, the Hasseldalen Tephra and the 10-ka Askja Tephra. Twenty-eight high-resolution C-14 measurements have been obtained and three different age models based on Bayesian statistics are employed to provide age estimates for the five different tephra layers. The chrono- and pollen stratigraphic framework supports the stratigraphic position of the Borrobol Tephra as found in Sweden at the very end of the Older Dryas pollen zone and provides the first age estimates for the Askja and Hasseldalen tephras. Our results, however, highlight the limitations that arise in attempting to establish a robust, chronologically independent lacustrine sequence that can be correlated in great detail to ice core or marine records. Radiocarbon samples are prone to error and sedimentation rates in lake basins may vary considerably due to a number of factors. Any type of valid and 'realistic' age model, therefore, has to take these limitations into account and needs to include this information in its prior assumptions. As a result, the age ranges for the specific horizons at Hasseldala port are large and calendar year estimates differ according to the assumptions of the age-model. Not only do these results provide a cautionary note for overdependence on one age-model for the derivation of age estimates for specific horizons, but they also demonstrate that precise correlations to other palaeoarchives to detect leads or lags is problematic. Given the uncertainties associated with establishing age-depth models for sedimentary sequences spanning the Lateglacial period, however, this exercise employing Bayesian probability methods represents the best possible approach and provides the most statistically significant age estimates for the pollen zone boundaries and tephra horizons. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Affiliation: Département de Biochimie, Université de Montréal

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.