952 resultados para Archives and Publication Cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1). Constitutively active IC‑Notch1 is silent until the introduction of Cre recombinase. In this study, endothelial/hematopoietic specific expression of IC‑Notch1 in double transgenic ZEG‑IC‑Notch1/Tie2‑Cre embryos induced embryonic lethality at E9.5 with defects in vascular system but not in hematopoietic system. Inducible IC‑Notch1 expression in adult mice was achieved by using tetracycline regulated Cre system. The ZEG‑IC‑Notch1/Tie2‑tTA/tet‑O‑Cre triple transgenic mice survived embryonic development when maintained on tetracycline. Post‑natal withdrawal of tetracycline induced expression of IC‑Notch1 transgene in hematopoietic cells of adult mice. The triple transgenic mice displayed extensive T‑cell infiltration in multiple organs and T‑cell malignancy of lymph nodes. In addition, the protein levels of p53 and alternative reading frame (ARF) were decreased in lymphoma‑like neoplasms from the triple transgenic mice while their mRNA expression remained unchanged, suggesting that IC‑Notch1 might repress ARF‑p53 pathway by a post‑transcriptional mechanism. This study demonstrated that activation of constitutive Notch1 signaling after embryonic development alters adult hematopoiesis and induces T‑cell malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyer's patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyer's patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyer's patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most COPD patients are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or following smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared to air-exposed mice when infected 16-24 hours post-exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to comparable levels as those of control mice suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production prior to infection in mice exposed to cigarette smoke relative to mice never exposed or following smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and GM-CSF in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using serpinb1a-deficient mice with reduced neutrophil numbers and treatment with G-CSF showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell differentiation and pattern formation are fundamental processes in animal development that are under intense investigation. The mouse retina is a good model to study these processes because it has seven distinct cell types, and three well-laminated nuclear layers that form during embryonic and postnatal life. β-catenin functions as both the nuclear effector for the canonical Wnt pathway and a cell adhesion molecule, and is required for the development of various organs. To study the function of β-catenin in retinal development, I used a Cre-loxP system to conditionally ablate β-catenin in the developing retina. Deletion of β-catenin led to disrupted laminar structure but did not affect the differentiation of any of the seven cell types. Eliminating β-catenin did not reduce progenitor cell proliferation, although enhanced apoptosis was observed. Further analysis showed that disruption of cell adhesion was the major cause of the observed patterning defects. Overexpression of β-catenin during retinal development also disrupted the normal retinal lamination and caused a transdifferentiation of neurons into pigmented cells. The results indicate that β-catenin functions as a cell adhesion molecule but not as a Wnt pathway component during retinal neurogenesis, and is essential for lamination but not cell differentiation. The results further imply that retinal lamination and cell differentiation are genetically separable processes. ^ Sonic hedgehog (shh) is expressed in retinal ganglion cells under the control of transcription factor Pou4f2 during retinal development. Previous studies identified a phylogenetically conserved region in the first intron of shh containing a Pou4f2 binding site. Transgenic reporter mice in which reporter gene expression was driven by this region showed that this element can direct gene expression specifically in the retina, but expression was not limited to the ganglion cells. From these data I hypothesized that this element is required for shh expression in the retina but is not sufficient for specific ganglion cell expression. To further test this hypothesis, I created a conditional allele by flanking this region with two loxP sites. Lines carrying this allele will be crossed with retinal-specific Cre lines to remove this element in the retina. My hypothesis predicts that alteration in shh expression and subsequent retinal defects will occur in the retinas of these mice. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-melanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma (SCC), are the most common neoplasms in the United States with a lifetime risk nearly equal to all other types of cancer combined. Retinoids are naturally occurring and synthetic analogues of vitamin A that bind to nuclear retinoid receptors and modulate gene expression as a means of regulating cell proliferation and differentiation. Retinoids have been employed for many years in the treatment of various cutaneous lesions and for cancer chemoprevention and therapy. The primary drawback limiting the use of retinoids is their toxicity, which is also associated with receptor-gene interactions. In this study, the effects of the synthetic retinoids N-(4-hydroxyphenyl)retinamide (4HPR) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) were examined in cutaneous keratinocytes. Four human cutaneous SCC cell lines were examined along with normal human epidermal keratinocyte (NHEK) cells from two donors. Sensitivity to 4HPR or CD437 alone or in combination with other agents was determined via growth inhibition, cell cycle distributions, or apoptosis induction. Both synthetic retinoids were able to promote apoptosis in SCC cells more effectively than the natural retinoid all-trans retinoic acid. Apoptosis could not be inhibited by nuclear retinoic acid receptor antagonists. In NHEK cells, 4HPR induced apoptosis while CD437 promoted G1 arrest. 4HPR acted as a prooxidant by generating reactive oxygen species (ROS) in SCC and NHEK cells. 4HPR-induced apoptosis in SCC cells could be inhibited or potentiated by manipulating cellular defenses against oxidative stress, indicating an essential role for ROS in 4HPR-induced apoptosis. CD437 promoted apoptosis in SCC cells in S and G2/M phases of the cell cycle within two hours of treatment, and this rapid induction could not be blocked with cycloheximide. This study shows: (1) 4HPR- and CD437-induced apoptosis do not directly involve a traditional retinoid pathway; (2) 4HPR can act as a prooxidant as a means of promoting apoptosis; (3) CD437 induces apoptosis in SCC cells independent of protein synthesis and is potentially less toxic to NHEK cells; and (4) 4HPR and CD437 operate under different mechanisms with respect to apoptosis induction and this may potentially enhance their therapeutic index in vivo. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies demonstrated that a synthetic fusion peptide of HIV-1 self-associates in phospholipid membranes and inhibits HIV-1 envelope glycoprotein-mediated cell fusion, presumably by interacting with the N-terminal domain of gp41 and forming inactive heteroaggregates [Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R. & Shai, Y. (1997) J. Biol. Chem. 272, 13496–13505]. Here, we show that a synthetic all d-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 (D-WT) of HIV-1 associates with its enantiomeric wild-type fusion (WT) peptide in the membrane and inhibits cell fusion mediated by the HIV-1 envelope glycoprotein. D-WT does not inhibit cell fusion mediated by the HIV-2 envelope glycoprotein. WT and D-WT are equally potent in inducing membrane fusion. D-WT peptide but not WT peptide is resistant to proteolytic digestion. Structural analysis showed that the CD spectra of D-WT in trifluoroethanol/water is a mirror image of that of WT, and attenuated total reflectance–fourier transform infrared spectroscopy revealed similar structures and orientation for the two enantiomers in the membrane. The results reveal that the chirality of the synthetic peptide corresponding to the HIV-1 gp41 N-terminal sequence does not play a role in liposome fusion and that the peptides’ chirality is not necessarily required for peptide–peptide interaction within the membrane environment. Furthermore, studies along these lines may provide criteria to design protease-resistant therapeutic agents against HIV and other viruses.