996 resultados para Antimicrobial Peptide Hepcidin
Resumo:
MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni(2+)-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His(6), His(12), or 2×His(6) tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His(6) < His(12) < 2×His(6) and NTA(1) < NTA(2) < NTA(4), respectively, depending on the configuration of the NTA moieties and increased to picomolar K(D) for the combination of a 2×His(6) tag and a 2×Ni(2+)-NTA(2). We demonstrate that HLA-A2-2×His(6)-peptide multimers containing either Ni(2+)-NTA(4)-biotin and PE-SA- or PE-NTA(4)-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells.
Resumo:
Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.
Resumo:
Lymph node cells derived from A.TH or A.TL mice primed with beef cytochrome c show striking patterns of reactivity when assayed in vitro for antigen-induced T cell proliferation. Whereas cells from A.TH mice respond specifically to beef cytochrome c or peptides composed of amino acids 1-65 and 81-104, cells from A.TL mice respond neither to beef cytochrome c nor to peptide 1-65, but proliferate following exposure to either peptide 81-104 or to a cytochrome c hybrid molecule in which the N-terminal peptide of beef (1-65) was substituted by a similar peptide obtained from rabbit cytochrome c. Thus, T cells from mice phenotypically unresponsive to beef cytochrome may, in fact, contain populations of lymphocytes capable of responding to a unique peptide, the response to which is totally inhibited when the same fragment is presented in the sequence of the intact protein.
Resumo:
There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY(1-36) upon incubation with human serum. Kinetic studies indicated that NPY(1-36) is rapidly cleaved in serum into 3 main fragments with the following order of efficacy: NPY(3-36) >> NPY(3-35) > NPY(2-36). Trace amounts of additional NPY forms were identified by accurate mass spectrometry. Specific inhibitors of dipeptidyl peptidase IV, kallikrein, and aminopeptidase P prevented the production of NPY(3-36), NPY(3-35), and NPY(2-36), respectively. Plasma kallikrein at physiological concentrations converted NPY(3-36) into NPY(3-35). Receptor binding assays revealed that NPY(3-35) is unable to bind to NPY Y1, Y2, and Y5 receptors; thus NPY(3-35) may represent the major metabolic clearance product of the Y2/Y5 agonist, NPY(3-36).
New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis.
Resumo:
We evaluated the benefits of a novel formulation of vasoactive intestinal peptide (VIP) based on the incorporation of VIP-loaded rhodamine-conjugated liposomes (VIP-Rh-Lip) within hyaluronic acid (HA) gel (Gel-VIP-Rh-Lip) for the treatment of endotoxin-induced uveitis (EIU) in comparison with VIP-Rh-Lip alone. In vitro release study and rheological analysis showed that interactions between HA chains and liposomes resulted in increased viscosity and reinforced elasticity of the gel. In vivo a single intravitreal injection of Gel-VIP-Rh-Lip was performed in rats 7 days prior to uveitis induction by subcutaneous lipopolysaccharide injection. The maximal ocular inflammation occurs within 16-24 h in controls (VIP-Rh-Lip, unloaded-Rh-Lip). Whereas intraocular injection of VIP-Rh-Lip had no effect on EIU severity compared with controls, Gel-VIP-Rh-Lip reduced significantly the clinical score and number of inflammatory cells infiltrating the eye. The fate of liposomes, VIP and HA in the eyes, regional and inguinal lymph nodes and spleen was analyzed by immunostaining and fluorescence microscopy. Retention of liposomes by HA gel was observed in vitro and in vivo. Inflammation severity seemed to impact on system stability resulting in the delayed release of VIP. Thus, HA gel containing VIP-Rh-Lip is an efficient strategy to obtain a sustained delivery of VIP in ocular and lymph node tissues.
Resumo:
Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre(®) YeastOne? test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
Numerous phase I and II clinical trials testing the safety and immunogenicity of various peptide vaccine formulations based on CTL-defined tumor antigens in cancer patients have been reported during the last 7 years. While specific T-cell responses can be detected in a variable fraction of immunized patients, an even smaller but significant fraction of these patients have objective tumor responses. Efficient therapeutic vaccination should aim at boosting naturally occurring antitumor T- and B-cell responses and at sustaining a large number of tumor antigen specific and fully functional effector T cells at tumor sites. Recent progress in our ability to quantitatively and qualitatively monitor tumor antigen specific CD8 T-cell responses will greatly help in making rapid progress in this field.
Resumo:
Carriage of animal-associated methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) is common among pig farmers. This study was conducted (i) to investigate whether pig farmers are colonized with pig-specific S. aureus genotypes other than CC398 and (ii) to survey antimicrobial resistance of S. aureus isolates from pigs and pig farmers. Forty-eight S. aureus isolates from pig farmers and veterinarians and 130 isolates from pigs collected in Western Switzerland were genotyped by spa typing and amplified fragment length polymorphism (AFLP). Antimicrobial resistance profiles were determined for representative sample of the isolates. The data obtained earlier on healthy S. aureus carriers without exposure to agriculture were used for comparison. The genotype composition of S. aureus isolates from pig farmers and veterinarians was similar to isolates from pigs with predominant AFLP clusters CC398, CC9, and CC49. The resistance to tetracycline and macrolides (clarithromycin) was common among the isolates from farmers and veterinarians (52 and 21%, respectively) and similar to resistance levels in isolates from pigs (39 and 23%, respectively). This was in contrast to isolates from persons without contact with agriculture, where no (0/128) isolates were resistant to tetracycline and 3% of the isolates were resistant to clarithromycin. MRSA CC398 was isolated from pigs (n = 11) and pig farmers (n = 5). These data imply that zoonotic transmission of multidrug-resistant S. aureus from pigs to farmers is frequent, and well-known MRSA transmission merely represents the tip of the iceberg for this phenomenon. We speculate that the relatively low frequency of MRSA isolation is related to lower antimicrobial use in Switzerland compared to, for example, the Netherlands.
Resumo:
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Resumo:
TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.
Resumo:
Crohn's disease (CD), a major form of human inflammatory bowel disease, is characterized by primary immunodeficiencies. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for intestinal homeostasis in response to both dietary- and microbiota-derived signals. Its role in host defense remains unknown, however. We show that PPARgamma functions as an antimicrobial factor by maintaining constitutive epithelial expression of a subset of beta-defensin in the colon, which includes mDefB10 in mice and DEFB1 in humans. Colonic mucosa of Ppargamma mutant animals shows defective killing of several major components of the intestinal microbiota, including Candida albicans, Bacteroides fragilis, Enterococcus faecalis, and Escherichia coli. Neutralization of the colicidal activity using an anti-mDefB10 blocking antibody was effective in a PPARgamma-dependent manner. A functional promoter variant that is required for DEFB1 expression confers strong protection against Crohn's colitis and ileocolitis (odds ratio, 0.559; P = 0.018). Consistently, colonic involvement in CD is specifically linked to reduced expression of DEFB1 independent of inflammation. These findings support the development of PPARgamma-targeting therapeutic and/or nutritional approaches to prevent colonic inflammation by restoring antimicrobial immunity in CD.
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.
Resumo:
Purpose/Objective(s): Radiotherapy is an effective treatment modality against cancer. Despite recent technical progresses in radiation delivery precision, toxicity to healthy tissues remains the main limiting factor. RasGAP is a regulator of the Ras and Rho pathway; it has either a pro- or anti-apoptotic activity depending on the level of caspase expressed in the cell. The RasGAP derived peptide: TAT-RasGAP317 - 326 is the minimal sequence known to sensitize cancer cells, but not healthy cells, to genotoxin-induced apoptosis. In this study the TAT-RasGAP317 - 326 radio-sensitizing effect was tested in vitro and in vivo.Materials/Methods: Two weeks clonogenic forming assays with 5 human cancer cells (PANC-1, HCT116, U87, U251 and HeLa) and a non tumorigenic cell line (HaCaT) were performed. Cells were exposed to 0, 1, 2 and 4 Gy with or without 20 mMTAT-RasGAP317 - 326. Twenty mMTAT peptide was also used as control. TAT-RasGAP317 - 326 effect was also tested in tumor xenograft mouse models. Mice bearing HCT116 tumors (WT or p53 mutant) received 1.65 mg/kg TAT-RasGAP317 - 326 i.p. injected and were locally irradiated for 10 days with 3 Gy. Tumor volume was then followed during a minimum of 20 days. Control mice were treated with a single modality, either with TAT-RasGAP317 - 326 or with radiotherapy.Results: At all the tested radiation doses TAT-RasGAP317 - 326 showed a significant supra additive radio-sensitizing effect on all the tested tumor cell lines. Furthermore, it showed no sensitizing effect on the non tumorigenic cell line. In vivo, TAT-RasGAP317 - 326 also showed a significantly radio-sensitizing effect as shown by a significant higher reduction in tumor volume as much as by a significant tumor growth delay.Conclusions: Taken together our data suggest that TAT-RasGAP317 - 326 has a radio-sensitizing effect on in vivo and in vitro tumors without any effect on healthy tissues. Therefore TAT-RasGAP317 - 326 should be considered as a novel and attractive sensitizer compound allowing an improvement of the therapeutic interval.