873 resultados para Anthropometry and body composition
Resumo:
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.
Resumo:
We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.
Resumo:
We determined the C and N concentrations and isotopic compositions of sediments in the prism sampled during Ocean Drilling Program Legs 170 and 205 offshore Costa Rica, with the goals of evaluating sediment sources and extents of diagenesis and identifying any effects of infiltrating fluids on the sedimentary C and N. The sediments from Leg 170 Site 1040 contain 0.85-1.96 wt% total organic carbon (TOC) with Vienna Peedee belemnite (VPDB) d13CVPDB from -26.3 per mil to -22.5 per mil, and 832-2221 ppm total nitrogen (TN) with d15Nair from +3.5 per mil to +6.6 per mil. Sediment TN concentrations and d15N values show dramatic downhole increases within the uppermost 130 m of the section and more gradual downhole decreases from 130 meters below seafloor (mbsf) to the base of the décollement at ~370 mbsf. Concentrations and isotopic compositions of TOC are relatively uniform within the entire section, showing some minor perturbation within the décollement zone. In the uppermost 100 m, upsection increases in TN concentrations at constant TOC concentrations produce significant increases in atomic TOC/TN ratios from ~8 to ~18. Carbonate (calcite) contents in the wedge sediments are generally low (<4 wt%), but the d13C and Vienna standard mean ocean water (VSMOW) d18OVSMOW values vary significantly from -26.1 per mil to +4.1 per mil and from +30.0 per mil to +35.3 per mil, respectively. Concentrations and isotopic compositions of TOC and TN for sediments from Leg 205 Sites 1254 and 1255 overlap well with C-N data for sediments from the same depth intervals obtained during Leg 170 at Site 1040.
Resumo:
Data obtained while investigating the mounds area near the Galapagos Spreading Center demonstrate the direct influence of solutions derived from the interaction of seawater and young oceanic crust on the sedimentary cover. Investigation of metalliferous sediments from the mid-oceanic ridges, the Galapagos mounds, and the FAMOUS-area zone formations have shown that this influence and the resulting products are dependent on composition, temperature, and conditions of solution input. The study of sulfur in upwardly migrating solutions and the interaction of these solutions with sediments is of great interest. Investigations of different types of hydrothermally derived formations (Edmond, et al., 1979; Spiess et al., 1980; Styrt et al., 1981; Rosanova 1976; Grinenko et al., 1978) have shown the significant role of sulfur-bearing minerals in deposits formed from hightemperature solutions. In contrast, the addition of hydrothermal sulfur is negligible in those metalliferous sediments that precipitated as a result of the interaction between the solutions and open seawater (Bonatti et al., 1972, 1976; Gordeev et al., 1979; Migdisov, Bogdanov, et al., 1979). For example, sulfides are absent in clearly oxidized metalliferous sediments from the East Pacific Rise (EPR). Barite sulfur from these sediments is identical with seawater sulfate sulfur in isotope composition (Grinenko et al., 1978). Gurvich and Bogdanov (1977) have suggested that barium from EPR metalliferous sediments results completely from biological activity and from the components of ocean waters. Edmond et al. (1979) report that low-temperature springs from the Galapagos Rift axis contain two types of solutions: those with and those without H2S.
Resumo:
X-ray diffraction analyses have been carried out on 128 samples of Miocene to Quaternary sediments from ODP Sites 794, 795 and 797. Some clay fractions of samples from Site 797 have also been studied for rare earth elements and by Nd isotopic analyses. These three sites display similar lithological and clay assemblages (with dominant chlorite, illite and smectite) showing that the sedimentation was homogeneous throughout the whole Japan Sea Basin. Three mineralogical zones are recognized. The first zone (Lower Miocene sandy clay of Sites 794 and 797) is mainly composed of chlorite resulting from hydrothermal transformation of arc-derived smectite, due to sill injections during the initial oceanic spreading stage. The second zone (Lower Miocene to Lower Pliocene siliceous claystone and diatomaceous silty clay) is dominated by arc-derived smectite; the abundance of this mineral decreases upwards while illite and chlorite increase. This trend reflects a change of detrital source, from an eastern arc-derived source (epsilon -Nd**t>-3.3); variable LREE enrichment) to a western continental crust source (epsilon-Nd**t<-9.4; shale-like REE patterns); climatic modifications in the current dynamics are proposed as a cause for this change. The third zone (Upper Pliocene to Recent silty clay with minor diatom oozes) is characterized at Site 797 by increasing amounts of illite and chlorite. This reflects a more and more important western supply which is assumed to be related to tectonic rejuvenations of the Asian margin or climatic modifications affecting the alteration conditions or the current dynamics. At Sites 794 and 795, the more or less sharp supply of chlorite seems to be driven by the incipient subduction zone on the eastern margin of the Japan Sea.