966 resultados para Annexin-A1
Resumo:
Consists of one report for each of the 50 States, the District of Columbia, and The United States.
Resumo:
Objectives: To identify potential molecular genetic determinants of cardiovascular ischemic tolerance in wild-type and transgenic hearts overexpressing A(1) adenosine receptors (A(1)ARs). Methods: cDNA microarrays were used to explore expression of 1824 genes ill wild-type hearts and ischemia-tolerant mouse hearts overexpressing A(1)ARs. Results: Overexpression of A(1)ARs reduced post-ischemic contractile dysfunction, limited arrhythmogenesis, and reduced necrosis by similar to80% in hearts subjected to 30 min global ischemia 60 mill reperfusion. Cardioprotection was abrogated by acute A(1)AR antagonism, and only a small number (19) of genes were modified by A(1)AR overexpression in normoxic hearts. Ischemia-reperfusion significantly altered expression of 75 genes in wild-type hearts (14 induced, 61 down-regulated), including genes for metabolic enzymes, structural/motility proteins, cell signaling proteins, defense/growth proteins, and regulators of transcription and translation. A(1)AR overexpression reversed the majority of gene down-regulation whereas gene induction was generally unaltered. Additionally, genes involved in cell defence, signaling and gene expression were selectively modified by ischemia in transgenic hearts (33 induced, 10 down-regulated), possibly contributing to the protected phenotype. Real-time PCR verified changes in nine selected genes, revealing concordance with array data. Transcription of the A(1)AR gene was also modestly reduced post-ischemia, consistent with impaired functional sensitivity to A(1)AR stimulation Conclusions: Data are presented regarding the early post-ischemic gene profile of intact heart. Reduced A(1)AR transcription is observed which may contribute to poor outcome from ischemia. A(1)AR overexpression selectively modifies post-ischemic gene expression, potentially contributing to ischemic-tolerance. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.
Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2
Resumo:
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin, hnRNP A2 bound A2RE in the latter site with a K-d near 50 nM, whereas the K-d for hnRNP A1 was above 10 muM. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 muM for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.
Resumo:
Plasma α-tocopherol (AT) concentrations are inversely related to cardiovascular (CV) risk; however, intervention studies with AT have failed to show any consistent benefit against CV disease (CVD). Proteomics offers the opportunity to examine novel effects of AT supplementation on protein expression and therefore improve our understanding of the physiological roles of AT. Thus, to investigate the effects of AT supplementation on the plasma proteome of healthy subjects we have undertaken a double-blind, randomised, parallel design supplementation study in which healthy subjects (n = 32; 11 male and 21 female) consumed AT supplements (134 or 268 mg/day) or placebo capsules for up to 28 days. Plasma samples were obtained before supplementation and after 14 and 28 days of supplementation for analysis of changes in the plasma proteome using 2-DE and MALDI-MS. Using semiquantitative proteomics, we observed that proapolipoprotein A1 (identified by MS and Western blotting) was altered at least two-fold. Using quantitative ELISA techniques, we confirmed a significant increase in plasma apolipoprotein A1 concentration following supplementation with AT which was both time and dose dependent (p < 0.01 after 28 days supplementation with 268 mg AT/day). These data demonstrate the time and dose sensitivity of the plasma proteome to AT supplementation. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .
Resumo:
Statins are agents widely used to lower LDL-cholesterol (LDL-C) in primary and secondary prevention of coronary heart disease. The five statins available in the UK (simvastatin, pravastatin, fluvastatin, atorvastatin and rosuvastatin) differ in many of their pharmacologic properties. In addition to lowering LDL-C, statins also increase HDL-cholesterol (HDL-C) moderately. There have been rare reports of significant HDL-C decreases in patients commenced on fibrates and when thiazolidinediones are added to fibrates. This is known as a 'paradoxical HDL-C decrease' as both groups of agents usually increase HDL-C. This phenomenon has never been clearly documented following statin therapy. We now describe a patient with type 2 diabetes who showed this paradoxical fall in HDL-C (baseline HDL-C: 1.8 mmol/L; on simvastatin 40 mg HDL-C 0.6 mmol/L; on atorvastatin 20 mg HDL-C 0.9 mmol/L) with a similar decrease in apolipoprotein A1. No similar decrease was observed with pravastatin and rosuvastatin therapy. This phenomenon appeared to be associated with statin treatment and not a statin/fibrate combination. Our patient clearly demonstrated a paradoxical HDL-C fall with simvastatin and atorvastatin, but not pravastatin or rosuvastatin. Simvastatin and atorvastatin share many pharmacokinetic properties such as lipophilicity while pravastatin and rosuvastatin are relatively hydrophilic and are not metabolized by cytochrome P450 3A4. However, these characteristics do not explain the dramatic reductions in HDL-C observed.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.