1000 resultados para Animal introduction
Resumo:
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: The AMS 800 urinary control system is the gold standard for the treatment of urinary incontinence due to sphincter insufficiency. Despite excellent functional outcome and latest technological improvements, the revision rate remains significant. To overcome the shortcomings of the current device, we developed a modern electromechanical artificial urinary sphincter. The results demonstrated that this new sphincter is effective and well tolerated up to 3 months. This preliminary study represents a first step in the clinical application of novel technologies and an alternative compression mechanism to the urethra. OBJECTIVES: To evaluate the effectiveness in continence achievement of a new electromechanical artificial urinary sphincter (emAUS) in an animal model. To assess urethral response and animal general response to short-term and mid-term activation of the emAUS. MATERIALS AND METHODS: The principle of the emAUS is electromechanical induction of alternating compression of successive segments of the urethra by a series of cuffs activated by artificial muscles. Between February 2009 and May 2010 the emAUS was implanted in 17 sheep divided into three groups. The first phase aimed to measure bladder leak point pressure during the activation of the device. The second and third phases aimed to assess tissue response to the presence of the device after 2-9 weeks and after 3 months respectively. Histopathological and immunohistochemistry evaluation of the urethra was performed. RESULTS: Bladder leak point pressure was measured at levels between 1091 ± 30.6 cmH2 O and 1244.1 ± 99 cmH2 O (mean ± standard deviation) depending on the number of cuffs used. At gross examination, the explanted urethra showed no sign of infection, atrophy or stricture. On microscopic examination no significant difference in structure was found between urethral structure surrounded by a cuff and control urethra. In the peripheral tissues, the implanted material elicited a chronic foreign body reaction. Apart from one case, specimens did not show significant presence of lymphocytes, polymorphonuclear leucocytes, necrosis or cell degeneration. Immunohistochemistry confirmed the absence of macrophages in the samples. CONCLUSIONS: This animal study shows that the emAUS can provide continence. This new electronic controlled sequential alternating compression mechanism can avoid damage to urethral vascularity, at least up to 3 months after implantation. After this positive proof of concept, long-term studies are needed before clinical application could be considered.
Resumo:
Adopting Best Care - Introduction (2002)
Resumo:
BACKGROUND: In contrast to mammalian erythrocytes, which have lost their nucleus and mitochondria during maturation, the erythrocytes of almost all other vertebrate species are nucleated throughout their lifespan. Little research has been done however to test for the presence and functionality of mitochondria in these cells, especially for birds. Here, we investigated those two points in erythrocytes of one common avian model: the zebra finch (Taeniopygia guttata). RESULTS: Transmission electron microscopy showed the presence of mitochondria in erythrocytes of this small passerine bird, especially after removal of haemoglobin interferences. High-resolution respirometry revealed increased or decreased rates of oxygen consumption by erythrocytes in response to the addition of respiratory chain substrates or inhibitors, respectively. Fluorometric assays confirmed the production of mitochondrial superoxide by avian erythrocytes. Interestingly, measurements of plasmatic oxidative markers indicated lower oxidative stress in blood of the zebra finch compared to a size-matched mammalian model, the mouse. CONCLUSIONS: Altogether, those findings demonstrate that avian erythrocytes possess functional mitochondria in terms of respiratory activities and reactive oxygen species (ROS) production. Interestingly, since blood oxidative stress was lower for our avian model compared to a size-matched mammalian, our results also challenge the idea that mitochondrial ROS production could have been one actor leading to this loss during the course of evolution. Opportunities to assess mitochondrial functioning in avian erythrocytes open new perspectives in the use of birds as models for longitudinal studies of ageing via lifelong blood sampling of the same subjects.
Resumo:
L’objectiu d’aquest estudi es investigar l’organització cortical junt amb la connectivitat còrtico-subcortical en subjectes sans, com a estudi preliminar. Els mapes corticals s’han fet per TMS navegada, i els punts motors obtinguts s’han exportant per estudi tractogràfic i anàlisi de las seves connexions. El coneixement precís de la localització de l’àrea cortical motora primària i les seves connexions es la base per ser utilitzada en estudis posteriors de la reorganització cortical i sub-cortical en pacients amb infart cerebral. Aquesta reorganització es deguda a la neuroplasticitat i pot ser influenciada per els efectes neuromoduladors de la estimulació cerebral no invasiva.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
PURPOSE OF REVIEW: This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS: The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY: Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.