939 resultados para Aluminium in Cochin estuary


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selected papers from the 3rd Edition of the International Conference on Wastes: Solutions, Treatments and Opportunities

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present research, undertaken in a mangrove swamp in northeastern Brazil (Mamanguape River Estuary), examined the factors that led to the overwhelming acceptance of the tangle-netting technique by crab harvesters in detriment to the now illegal tamping technique. Both techniques are the only ones currently used at our study site and in many other areas in Brazil, despite being prohibited by law. Data were collected through direct observations to determine capture efficiency, productivity, daily production, selectivity, and harvesting effort, and through interviews with crab harvesters, focusing on their perceptions of the capture techniques, the conditions of crab stocks and the sales price of a dozen crabs. Our results indicated that the two capture techniques did not significantly differ in terms of their efficiency or productivity, but daily production rates differed significantly, being greater using tangle-netting. The tangle-netting permits a greater harvesting effort (6 hours and 34 min) compared to tamping (4 hours and 19 min). Tangle-netting is also less selective than tamping indicated by the larger number of captured smaller specimens, including females. This results in a lower average sales price for a dozen crabs caught by tangle-netting (US$ 0.95) compared to tamping (US$ 1.02). The greater daily production of crab harvesters using the tangle-netting technique nevertheless increased their net gain, explaining their preference for this method, Given that tangle-netting results in greater harvesting pressure but lower selectivity compared to tamping, it may potentially be less sustainable. All of the crab harvesters interviewed having more than 20 years of experience (n = 34) stated they perceived that stocks of U. cordatus had become reduced over the last 20 years, together with average crab sizes. It is now important to examine the structure of the local U. cordatus population and to assess its fishery to allow evaluating whether the illegal, but prominent tangle-netting and tamping mangrove crab capture techniques are sustainable or not. We further suggest improving the dialogue between decision makers and fishermen, which barely exists to date, to initiate a discussion about possible ways of resolving the current situation of illegality of the fishermen. This will be key to achieving effective sustainable co-management of this important natural mangrove forest resource.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al-drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (-0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al(3+), La(3+), Sr(2+), and Rb(+) binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al(3+) compared with other cations (Al(3+) >> La(3+) > Sr(2+) > Rb(+)). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast.