927 resultados para Adverse Weather
Resumo:
A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain-snow transition zone. This type of dataset is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow events. Surface soil textures and soil depths from 57 points are presented as well as soil texture profiles from 14 points. Meteorological data include continuous hourly shielded, unshielded, and wind corrected precipitation, wind speed, air temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation data. Sub-surface data included are hourly soil moisture data from multiple depths from 7 soil profiles within the catchment, and soil temperatures from multiple depths from 2 soil profiles. Hydrologic response data include hourly stream discharge from the catchment outlet weir, continuous snow depths from one location, intermittent snow depths from 5 locations, and snow depth and density data from ten weekly snow surveys. Though it represents only a single water year, the presentation of both above and below ground hydrologic condition makes it one of the most detailed and complete hydro-climatic datasets from the climatically sensitive rain-snow transition zone for a wide range of modeling and descriptive studies.
Resumo:
The importance of renewable energies for the European electricity market is growing rapidly. This presents transmission grids and the power market in general with new challenges which stem from the higher spatiotemporal variability of power generation. This uncertainty is due to the fact that renewable power production results from weather phenomena, thus making it difficult to plan and control. We present a sensitivity study of a total solar eclipse in central Europe in March. The weather in Germany and Europe was modeled using the German Weather Service's local area models COSMO-DE and COSMO-EU, respectively (http://www.cosmo-model.org/). The simulations were performed with and without considering a solar eclipse for the following 3 situations: 1. An idealized, clear-sky situation for the entire model area (Europe, COSMO-EU) 2. A real weather situation with mostly cloudy skies (Germany, COSMO-DE) 3. A real weather situation with mostly clear skies (Germany, COSMO-DE) The data should help to evaluate the effects of a total solar eclipse on the weather in the planetary boundary layer. The results show that a total solar eclipse has significant effects particularly on the main variables for renewable energy production, such as solar irradiation and temperature near the ground.