922 resultados para Adipose browning
Resumo:
The overall thermogenic response to food intake measured over a whole day in 20 young nondiabetic obese women (body fat mean +/- SEM: 38.6 +/- 0.7%), was compared with that obtained in eight nonobese control women (body fat: 24.7 +/- 0.9%). The energy expenditure of the subjects was continuously measured over 24 h with a respiration chamber, and the spontaneous activity was assessed by a radar system. A new approach was used to obtain the integrated thermogenic response to the three meals ingested over the day (from 8:30 AM to 10:30 PM). This method allows to subtract the energy expended for physical activity from total energy expenditure and to calculate the integrated dietary-induced thermogenesis as the difference between the energy expended without physical activity and basal metabolic rate. The thermogenic response to the three meals (expressed in percentage of the total energy ingested) was found to be blunted in obese women (8.7 +/- 0.8%) as compared with that of controls (14.8 +/- 1.1%). There was an inverse correlation between the percentage body fat and the diet-induced thermogenesis (r = -0.61, p less than 0.001). In addition, the relative increase in diurnal urinary norepinephrine excretion was lower in obese than in the control subjects. It is concluded that a low overall thermogenic response to feeding may be a contributing factor for energy storage in some obese subjects; a blunted response of the sympathetic nervous system could explain this low thermogenic response.
Resumo:
This study was performed to investigate whether body fat distribution influences resting metabolic rate and lipid oxidation in obese individuals. Eighty-nine obese women were divided in two groups (android obese, n = 36, BMI = 31.1 +/- 4.5 kg/m2 (mean +/- s.d.); gynoid obese, n = 53, BMI = 29.9 +/- 4.5 kg/m2 on the basis of their waist/hip ratio (0.86 +/- 0.05 vs 0.75 +/- 0.04 respectively). Body weight, per cent body fat and fat-free mass were similar in the two groups. Moreover, resting metabolic rate and respiratory quotient were also identical in android and gynoid obese women, indicating that there was no intergroup difference in the absolute level of lipid oxidation. If, like most other android obese women, they had higher rates of lipolysis and plasma FFA concentrations, the failure of android obese individuals to exhibit a higher lipid oxidation than gynoid obese women may partly explain their increased risk to develop metabolic complications.
Resumo:
Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.
Resumo:
Small daily positive energy imbalances of 200 to 800 kJ (about 50 to 200 kcal) due to reduced resting energy expenditure (REE), reduced diet-induced thermogenesis, or physical inactivity are believed to predispose to obesity. However, estimates of the magnitude of the weight gain often fail to account for concurrent changes in body composition and increases in maintenance energy requirements as weight increases and energy equilibrium is re-established. Using previously reported data on body composition and REE in women and the energy cost of tissue deposition, we used mathematical models to predict the theoretical effect of a persistent reduction in energy expenditure on long-term weight gain, assuming no adaptation in energy intake. The analyses indicate the following effects of a reduced level of energy expenditure in lean and obese women: (i) REE rises more slowly with increasing degrees of obesity due to a declining proportion of the more metabolically active fat-free mass; so, for the same positive energy balance, a significantly greater weight gain is expected for obese than for lean women before energy equilibrium is re-established; (ii) due to the greater energy density of adipose tissue, the time course of weight gain to achieve energy balance is longer for obese subjects: in general, this is approximately five years for lean and ten years for obese women; (iii) the magnitude of weight gain of lean women in response to a reduced energy expenditure of 200 to 800 kJ/day is only about 3 to 15 kg, amounts insufficient to explain severe obesity.
Resumo:
Diabetes mellitus is a complex disease resulting in altered glucose homeostasis. In both type 1 and type 2 diabetes mellitus, pancreatic β cells cannot secrete appropriate amounts of insulin to regulate blood glucose level. Moreover, in type 2 diabetes mellitus, altered insulin secretion is combined with a resistance of insulin-target tissues, mainly liver, adipose tissue, and skeletal muscle. Both environmental and genetic factors are known to contribute to the development of the disease. Growing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNA molecules, are involved in the pathogenesis of diabetes. miRNAs function as translational repressors and are emerging as important regulators of key biological processes. Here, we review recent studies reporting changes in miRNA expression in tissues isolated from different diabetic animal models. We also describe the role of several miRNAs in pancreatic β cells and insulin-target tissues. Finally, we discuss the possible use of miRNAs as blood biomarkers to prevent diabetes development and as tools for gene-based therapy to treat both type 1 and type 2 diabetes mellitus.
Resumo:
There is little information regarding the prevalence of thinness in European adolescents. This was assessed in a convenience sample of children and adolescents from the Lisbon area (Portugal). Cross-sectional study including 2494 boys and 2519 girls aged 10-18 years. Body mass index (BMI), waist and hip were measured using standardized methods; thinness was defined using international criteria. Body fat was assessed by bioelectrical impedance. In girls, prevalence of thinness, overweight and obesity were 5.6%, 19.7% and 4.7%, respectively, whereas the corresponding numbers in boys were 3.9%, 17.4% and 5.3%. Prevalence of thinness increased whereas obesity decreased with age: from 1.5% to 7.6% for thinness and from 9.2% to 3.8% for obesity in girls aged 10 and 18, respectively. In boys, the corresponding trends were from 0% to 7.3% for thinness and from 10.6% to 3% for obesity. After adjusting for age, differences were found between BMI groups for weight, body fat percentage, fat mass, lean mass, waist and hip, while no differences regarding height were found between thin and normal weight participants. The prevalence of thinness is more frequent than obesity after age 14 in girls and 16 years in boys. Thinness is associated with a decreased body weight and body fat, whereas no consistent effect on height was noted.
Resumo:
BACKGROUND: Conventional x-ray angiography frequently underestimates the true burden of atherosclerosis. Although intravascular ultrasound allows for imaging of coronary plaque, this invasive technique is inappropriate for screening or serial examinations. We therefore sought to develop a noninvasive free-breathing MR technique for coronary vessel wall imaging. We hypothesized that such an approach would allow for in vivo imaging of coronary atherosclerosis. METHODS AND RESULTS: Ten subjects, including 5 healthy adult volunteers (aged 35+/-17 years, range 19 to 56 years) and 5 patients (aged 60+/-4 years, range 56 to 66 years) with x-ray-confirmed coronary artery disease (CAD), were studied with a T2-weighted, dual-inversion, fast spin-echo MR sequence. Multiple adjacent 5-mm cross-sectional images of the proximal right coronary artery were obtained with an in-plane resolution of 0.5x1.0 mm. A right hemidiaphragmatic navigator was used to facilitate free-breathing MR acquisition. Coronary vessel wall images were readily acquired in all subjects. Both coronary vessel wall thickness (1.5+/-0.2 versus 1.0+/-0.2 mm) and wall area (21.2+/-3.1 versus 13.7+/-4.2 mm(2)) were greater in patients with CAD (both P:<0.02 versus healthy adults). CONCLUSIONS: In vivo free-breathing coronary vessel wall and plaque imaging with MR has been successfully implemented in humans. Coronary wall thickness and wall area were significantly greater in patients with angiographic CAD. The presented technique may have potential applications in patients with known or suspected atherosclerotic CAD or for serial evaluation after pharmacological intervention.
Resumo:
Nutrient ingestion triggers a complex hormonal response aimed at stimulating glucose utilization in liver, muscle and adipose tissue to minimize the raise in blood glucose levels. Insulin secretion by pancreatic beta cells plays a major role in this response. Although the beta cell secretary response is mainly controlled by blood glucose levels, gut hormones secreted in response to food intake have an important role in potentiating glucose-stimulated insulin secretion. These gluco-incretin hormones are GLP-1 (glucagon-like peptide-1) and GIP (gluco-dependent insulinotropic polypeptide). Their action on pancreatic beta cells depends on binding to specific G-coupled receptors linked to activation of the adenylyl cyclase pathway. In addition to their effect on insulin secretion both hormones also stimulate insulin production at the transcriptional and translational level and positively regulate beta cell mass. Because the glucose-dependent insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide is now developed as a novel therapeutic drug for this disease.
Resumo:
The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.
Resumo:
Prolonged deprivation of food induces dramatic changes in mammalian metabolism, including the release of large amounts of fatty acids from the adipose tissue, followed by their oxidation in the liver. The nuclear receptor known as peroxisome proliferator-activated receptor alpha (PPARalpha) was found to play a role in regulating mitochondrial and peroxisomal fatty acid oxidation, suggesting that PPARalpha may be involved in the transcriptional response to fasting. To investigate this possibility, PPARalpha-null mice were subjected to a high fat diet or to fasting, and their responses were compared with those of wild-type mice. PPARalpha-null mice chronically fed a high fat diet showed a massive accumulation of lipid in their livers. A similar phenotype was noted in PPARalpha-null mice fasted for 24 hours, who also displayed severe hypoglycemia, hypoketonemia, hypothermia, and elevated plasma free fatty acid levels, indicating a dramatic inhibition of fatty acid uptake and oxidation. It is shown that to accommodate the increased requirement for hepatic fatty acid oxidation, PPARalpha mRNA is induced during fasting in wild-type mice. The data indicate that PPARalpha plays a pivotal role in the management of energy stores during fasting. By modulating gene expression, PPARalpha stimulates hepatic fatty acid oxidation to supply substrates that can be metabolized by other tissues.
Resumo:
B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.
Resumo:
AIMS/HYPOTHESIS: The molecular mechanisms of obesity-related insulin resistance are incompletely understood. Macrophages accumulate in adipose tissue of obese individuals. In obesity, monocyte chemoattractant protein-1 (MCP-1), a key chemokine in the process of macrophage accumulation, is overexpressed in adipose tissue. MCP-1 is an insulin-responsive gene that continues to respond to exogenous insulin in insulin-resistant adipocytes and mice. MCP-1 decreases insulin-stimulated glucose uptake into adipocytes. The A-2518G polymorphism in the distal regulatory region of MCP-1 may regulate gene expression. The aim of this study was to investigate the impact of this gene polymorphism on insulin resistance. METHODS: We genotyped the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort ( n=3307). Insulin resistance, estimated by homeostasis model assessment, and Type 2 diabetes were diagnosed in 803 and 635 patients respectively. RESULTS: Univariate analysis revealed that plasma MCP-1 levels were significantly and positively correlated with WHR ( p=0.011), insulin resistance ( p=0.0097) and diabetes ( p<0.0001). Presence of the MCP-1 G-2518 allele was associated with decreased plasma MCP-1 ( p=0.017), a decreased prevalence of insulin resistance (odds ratio [OR]=0.82, 95% CI: 0.70-0.97, p=0.021) and a decreased prevalence of diabetes (OR=0.80, 95% CI: 0.67-0.96, p=0.014). In multivariate analysis, the G allele retained statistical significance as a negative predictor of insulin resistance (OR=0.78, 95% CI: 0.65-0.93, p=0.0060) and diabetes (OR=0.80, 95% CI: 0.66-0.96, p=0.018). CONCLUSIONS/INTERPRETATION: In a large cohort of Caucasians, the MCP-1 G-2518 gene variant was significantly and negatively correlated with plasma MCP-1 levels and the prevalence of insulin resistance and Type 2 diabetes. These results add to recent evidence supporting a role for MCP-1 in pathologies associated with hyperinsulinaemia.
Resumo:
Immunodominance has been well-demonstrated in many antiviral and antibacterial systems, but much less so in the setting of immune responses against cancer. Tumor Ag-specific CD8+ T cells keep cancer cells in check via immunosurveillance and shape tumor development through immunoediting. Because most tumor Ags are self Ags, the breadth and depth of antitumor immune responses have not been well-appreciated. To design and develop antitumor vaccines, it is important to understand the immunodominance hierarchy and its underlying mechanisms, and to identify the most immunodominant tumor Ag-specific T cells. We have comprehensively analyzed spontaneous cellular immune responses of one individual and show that multiple tumor Ags are targeted by the patient's immune system, especially the "cancer-testis" tumor Ag NY-ESO-1. The pattern of anti-NY-ESO-1 T cell responses in this patient closely resembles the classical broad yet hierarchical antiviral immunity and was confirmed in a second subject.
Resumo:
Fat balance plays an important role in fat mass regulation. The mechanisms by which fat intake and fat oxidation are controlled are poorly understood. In particular, no data are available on the origin, i.e. exogenous (meal intake) or endogenous (adipose tissue lipolysis), of fat oxidized during the postprandial period in children and the proportion between these two components. In this study we tested the hypothesis that there is a relationship between adiposity and the oxidative fate of fat taken with a mixed meal in a group of 15 children with a wide range of fat mass (9-64%). The combination of stable isotope analysis ([13C] enriched fatty acids added to a mixed meal) and indirect calorimetry allowed us to differentiate between the exogenous and endogenous resting fat oxidation rate over the 9-h postprandial period. During the 9 hours of the postprandial period, the children oxidized an amount of fat comparable to that ingested with the meal [26.8 (+/-2.31) g vs. 26.4 (+/-2.3) g, respectively, P = ns]. On average, exogenous fat oxidation [2.99 (+/-3.0) g/9 h] represented 10.8% (+/-0.9) of total fat oxidation. Endogenous fat oxidation, calculated as the difference between total fat oxidation and exogenous fat oxidation, averaged 23.4 (+/-1.9) g/9 h and represented 88.2% (+/-0.9) of total fat oxidation. Endogenous fat oxidation as well as exogenous fat oxidation were highly correlated to total fat oxidation (r = 0.83, P < 0.001; r = 0.84, P < 0.001, respectively). Exogenous fat oxidation expressed as a proportion of total fat oxidation was directly related to fat mass (r = 0.56, P < 0.03), while endogenous fat oxidation expressed as a proportion of total fat oxidation was inversely related (r = -0.57, P < 0.03) to the degree of adiposity. The enhanced exogenous fat oxidation observed when adiposity increases in the dynamic phase of obesity may be viewed as a protective mechanism to prevent further increase in fat mass and hence to maintain fat oxidation at a sufficient rate when the body is exposed to a high amount of dietary fat, as typically encountered in obese children.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.