930 resultados para Adenosine triphosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesin and ncd motor proteins are homologous in sequence yet move in opposite directions along microtubules. We have previously shown that monomeric kinesin and ncd bind in the same orientation on equivalent sites relative to the ends of tubulin sheets of known polarity. We now report cryoelectron microscope images of 16-protofilament microtubules decorated with both single- and double-headed kinesin and double-headed ncd. Three-dimensional density maps and difference maps show that, in adenosine 5'-[beta,gamma-imido]triphosphate, both dimeric motors bind tightly to microtubules via one head, leaving the other free, though apparently in a fixed position. The attached heads of dimers bind to tubulin in the same way as single kinesin heads. The second heads are connected to the tops of the first but, whereas the second kinesin head is closely associated with the first, pairs of ncd heads are splayed apart. There is also a distinct difference in orientation: the second kinesin head is tilted toward the microtubule plus end, while the second head of ncd points toward the minus end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 6-hr continuous infusion of 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenos ine (CGS21680), a selective A2a-adenosine agonist, into the subarachnoid space underlying the ventral surface region of the rostral basal forebrain, which has been defined as the prostaglandin (PG) D2-sensitive sleep-promoting zone, at rates of 0.02, 0.2, 2.0, and 12 pmol/min increased slow-wave sleep (SWS) and paradoxical sleep (PS) in a dose-dependent manner up to 183% and 202% of their respective baseline levels. The increments produced by the infusion of CGS21680 at 0.2 and 2.0 pmol/min were totally diminished when the rats had been pretreated with an i.p. injection of (E)-1,3-dipropyl-7-methyl-8-(3,4-dimethoxystyryl)xanthine (KF17837; 30 mg/kg of body weight), a selective A2-adenosine antagonist. In contrast, the infusion of N6-cyclohexyladenosine (CHA), a selective A1-adenosine agonist, at 2 pmol/min significantly suppressed SWS before causing an increase in SWS, and a decrease in PS was also markedly visible. Essentially the same effects of CGS21680 and CHA were observed when these compounds were administered to the parenchymal region of the rostral basal forebrain through chronically implanted microdialysis probes. Thus, we clearly showed that stimulation of A2a-adenosine receptors in the rostral basal forebrain promotes SWS and PS. Furthermore, i.p. injections of KF17837 at 30 and 100 mg/kg of body weight dose-dependently attenuated the magnitude of the SWS increase produced by the infusion of PGD2 into the subarachnoid space of the sleep-promoting zone, thus indicating that the A2a-adenosine receptors are crucial in the sleep-promoting process triggered by PGD2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thymidine analog fialuridine deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (FIAU) was toxic in trials for chronic hepatitis B infection. One mechanism postulated that defective mtDNA replication was mediated through inhibition of DNA polymerase-gamma (DNA pol-gamma), by FIAU triphosphate (FIALTP) or by triphosphates of FIAU metabolites. Inhibition kinetics and primer-extension analyses determined biochemical mechanisms of FIAU, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) -5-methyluracil (FAU), 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil triphosphate (TP) inhibition of DNA pol-gamma. dTMP incorporation by DNA pol-gamma was inhibited competitively by FIAUTP, FMAUTP, and FAUTP (K1=0.015, 0.03, and 1.0 microM, respectively). By using oliginucleotide template-primers. DNA pol-gamma incorporated each analog into DNA opposite a single adenosine efficiently without effects on DNA chain elongation. Incorporation of multiple adjacent analogs at positions of consecutive adenosines dramatically impaired chain elongation by DNA pol-gamma. Effects of FIAU, FMAU, and FAU on HepG2 cell mmtDNA abundance and ultrastructure were determined. After 14 days, mtDNA decreased by 30% with 20 microM FIAU or 20 microM FMAU and decreased less than 10% with 100 microM FAU. FIAU and FMAU disrupted mitochondria and caused accumulation of intracytoplasmic lipid droplets. Biochemical and cell biological findings suggest that FIAU and its metabolites inhibit mtDNA replication, most likely at positions of adenosine tracts, leading to decreased mtDNA and mitochondrial ultrastructural defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine kinase catalyzes the phosphorylation of adenosine to AMP and hence is a potentially important regulator of extracellular adenosine concentrations. Despite extensive characterization of the kinetic properties of the enzyme, its primary structure has never been elucidated. Full-length cDNA clones encoding catalytically active adenosine kinase were obtained from lymphocyte, placental, and liver cDNA libraries. Corresponding mRNA species of 1.3 and 1.8 kb were noted on Northern blots of all tissues examined and were attributable to alternative polyadenylylation sites at the 3' end of the gene. The encoding protein consists of 345 amino acids with a calculated molecular size of 38.7 kDa and does not contain any sequence similarities to other well-characterized mammalian nucleoside kinases, setting it apart from this family of structurally and functionally related proteins. In contrast, two regions were identified with significant sequence identity to microbial ribokinase and fructokinases and a bacterial inosine/guanosine kinase. Thus, adenosine kinase is a structurally distinct mammalian nucleoside kinase that appears to be akin to sugar kinases of microbial origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine deaminase (ADA, EC 3.5.4.4) is a ubiquitous enzyme in the purine catabolic pathway. In contrast to the widespread tissue distribution of this enzyme, inherited ADA deficiency in human results in a tissue-specific severe combined immunodeficiency. To explain the molecular basis for this remarkable tissue specificity, we have used a genetic approach to study ADA deficiency. We demonstrate that ADA deficiency causes depletion of CD8low transitional and CD4+CD8+ double-positive thymocytes by an apoptotic mechanism. This effect is mediated by a p53-dependent pathway, since p53-deficient mice are resistant to the apoptosis induced by ADA deficiency. DNA damage, known to be caused by the abnormal accumulation of dATP in ADA deficiency, is therefore responsible for the ablation of T-cell development and for the immunodeficiency. The two thymocyte subsets most susceptible to apoptosis induced by ADA deficiency are also the two thymocyte subsets with the lowest levels of bcl-2 expression. We show that thymocytes from transgenic mice that overexpress bcl-2 in the thymus are rescued from apoptosis induced by ADA deficiency. Thus, the tissue specificity of the pathological effects of ADA deficiency is due to the low bcl-2 expression in CD8low transitional and CD4+CD8+ double-positive thymocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A M(r) 140,000 protein has been purified from chicken lungs to apparent homogeneity. The protein binds with high affinity to a non-BNA conformation, which is most likely to the Z-DNA. The protein also has a binding site for double-stranded RNA (dsRNA). Peptide sequences from this protein show similarity to dsRNA adenosine deaminase, an enzyme that deaminates adenosine in dsRNA to form inosine. Assays for this enzyme confirm that dsRNA adenosine deaminase activity and Z-DNA binding are properties of the same molecule. The coupling of these two activities in a single molecule may indicate a distinctive mechanism of gene regulation that is, in part, dependent on DNA topology. As such, DNA topology, through its effects on the efficiency and extent of RNA editing may be important in the generation of new phenotypes during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine which features of retroviral vector design most critically affect gene expression in hematopoietic cells in vivo, we have constructed a variety of different retroviral vectors which encode the same gene product, human adenosine deaminase (EC 3.5.4.4), and possess the same vector backbone yet differ specifically in transcriptional control sequences suggested by others to be important for gene expression in vivo. Murine bone marrow cells were transduced by each of the recombinant viruses and subsequently used to reconstitute the hematopoietic system of lethally irradiated recipients. Five to seven months after transplantation, analysis of the peripheral blood of animals transplanted with cells transduced by vectors which employ viral long terminal repeats (LTRs) for gene expression indicated that in 83% (77/93) of these animals, the level of human enzyme was equal to or greater than the level of endogenous murine enzyme. Even in bone marrow transplant recipients reconstituted for over 1 year, significant levels of gene expression were observed for each of the vectors in their bone marrow, spleen, macrophages, and B and T lymphocytes. However, derivatives of the parental MFG-ADA vector which possess either a single base mutation (termed B2 mutation) or myeloproliferative sarcoma virus LTRs rather than the Moloney murine leukemia virus LTRs led to significantly improved gene expression in all lineages. These studies indicate that retroviral vectors which employ viral LTRs for the expression of inserted sequences make it possible to obtain high levels of a desired gene product in most hematopoietic cell lineages for close to the lifetime of bone marrow transplant recipients.