916 resultados para Acidic pH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o potencial de lixiviação do picloram em solos utilizados em pastagens no Brasil (Argissolo Vermelho-Amarelo e Latossolo Vermelho-Amarelo, com dois valores de pH). Para isso, amostras desses solos coletadas à profundidade de 0-20 cm (incubadas ou não com calcário por um período de 70 dias) foram utilizadas como substrato para preenchimento de colunas de PVC de 10 cm de diâmetro por 50 cm de comprimento. Realizou-se um experimento em esquema de parcela subsubdividida, em delineamento inteiramente casualizado, com quatro repetições. Os tratamentos compreenderam a combinação de uma dose do herbicida picloram (160 g ha-1), três intensidades de chuva (40, 80 e 120 mm), três tipos de solo e 10 profundidades de amostragem nas colunas. As avaliações realizadas foram relativas ao desenvolvimento das plantas indicadoras nos substratos das colunas nas profundidades de 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45 e 45-50 cm. Após o preparo das colunas, estas foram umedecidas e colocadas na posição vertical para drenagem do excesso de água. Após esse período, aplicou-se no topo delas o herbicida e, 12 horas depois, foram feitas as simulações das chuvas, especificadas de acordo com o tratamento. Elas permaneceram na posição vertical por mais 72 horas, para drenagem e lixiviação do herbicida. Após esse período, as colunas foram abertas longitudinalmente e colocadas na posição horizontal, semeando-se ao longo delas a espécie indicadora (Cucumis sativus). Conclui-se que o picloram apresentou alta taxa de lixiviação em todos os solos estudados e que sua movimentação no perfil dos solos foi influenciada pelo volume de chuva simulado, pelo pH do solo e, também, por outras características do solo, possivelmente pelo teor de matéria orgânica. O solo com baixo teor de matéria orgânica e pH mais elevado apresentou maior índice de lixiviação do picloram aplicado à camada superficial do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se com este trabalho determinar os coeficientes de sorção e dessorção do ametryn num Argissolo Vermelho-Amarelo (PVA) e num Latossolo Vermelho-Amarelo (LVA) com diferentes valores de pH. Para isso, amostras desses solos foram coletadas na profundidade de 0 a 20 cm, em pastagens degradadas sem histórico da utilização de herbicidas da região de Viçosa, MG, e incubadas ou não com calcário por 90 dias. Neste estudo foi utilizado o método "Batch slurry", conduzido em condições controladas de laboratório. O método consistiu na utilização de 10,0 mL de solução com concentrações crescentes do padrão de ametryn, preparadas em solução de CaCl2 0,01 mol L-1, as quais foram adicionadas a 2,00 g de solo, permanecendo sob agitação rotatória por 12 h. Após centrifugação e filtração, a concentração do sobrenadante foi determinada pela técnica de cromatografia líquida de alta eficiência - CLAE, com detector UV de 245 nm. A dessorção foi avaliada utilizando as amostras contidas nos tubos, após os ensaios de sorção, que continham dose inicial de 25,0 mg L ¹ de herbicida. O PVA apresentou o maior coeficiente de adsorção (Kfa) quando comparado ao LVA, independentemente dos valores de pH das amostras. Isso foi atribuído ao maior teor de matéria orgânica do PVA em comparação ao LVA. Quando se compararam diferentes valores de pH utilizando apenas o LVA, observou-se que o aumento do pH ocasionou menor valor de Kfa. Baixos índices de histerese foram verificados no ametryn nos solos estudados, o que representa risco de lixiviação desse herbicida no perfil desses solos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se com este trabalho determinar a meia-vida (t½) do herbicida ametryn em Argissolo Vermelho-Amarelo e Latossolo Vermelho-Amarelo, com diferentes valores de pH. Foram utilizados vasos revestidos internamente com filme plástico e preenchidos com 330,0 g de amostras dos solos em estudo (Latossolo Vermelho-Amarelo - LVA com valores de pH corrigidos para 4,4, 4,9 e 5,8, e Argissolo Vermelho-Amarelo - PVA com pH 5,9). As amostras desses solos foram coletadas em pastagens degradadas isentas da aplicação de herbicidas. A essas amostras foi aplicado o ametryn na dose de 2,5 L ha-1. Doze horas após essa aplicação, foram retiradas as primeiras amostras de solo dos vasos, para determinação da concentração no tempo zero, e a cada cinco dias foram retiradas novas amostras de outros vasos, visando à determinação da concentração de ametryn ao longo do tempo. A extração do ametryn da matriz solo foi realizada por Extração Sólido Líquido com Partição em Baixa Temperatura (ESL-PBT), e o herbicida, quantificado por cromatografia líquida de alta eficiência - CLAE. Foi realizado, em paralelo, um teste biológico para determinação indireta da persistência do herbicida. A análise dos dados indicou que a meia-vida (t½) do ametryn nos solos avaliados foi de 26, 19, 12 e 11 dias para os solos LVA pH 4,4; LVA pH 4,9; LVA pH 5,8; e PVA pH 5,9, respectivamente. Ambos os métodos (cromatografia ou bioensaios) utilizados para avaliação da persistência do ametryn nos solos evidenciaram que a degradação desse herbicida é muito influenciada pelo pH do solo e pelo teor de matéria orgânica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory and greenhouse experiments were conducted to determine the effects of drought and salinity stress, temperature, pH and planting depth on yellow sweet clover (Melilotus officinalis) germination and emergence. Base, optimum and ceiling germination temperatures were estimated as 0, 18.47 and 34.60 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited at a potential of -1 MPa, but it was tolerant to salinity. Salinity stress up to 90 mM had no effect over the M. officinalis seed germination, but the germination decreased by increasing the salt concentration. The drought and salinity required for 50% inhibition of maximum germination were 207 mM and -0.49 MPa, respectively. High percentage of seed germination (>92%) was observed at pH = 5-6 and decreased to 80% at acidic medium (pH 4) and to 42% at alkaline medium (pH 9) pH. Maximum seedling emergence occurred when the seeds were placed at 2 cm depth and decreased when increasing the depth of planting; no seed emerged from depths of 10 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os objetivos deste trabalho foram isolar, identificar e caracterizar a atividade alelopática de substâncias químicas produzidas por Acacia mangium, além de determinar as variações na atividade das substâncias em função da variação do pH da solução. A atividade alelopática foi avaliada em bioensaios de germinação (25 ºC de temperatura e fotoperíodo de 12 horas) e crescimento de radícula e hipocótilo (25 ºC de temperatura e fotoperíodo de 24 horas) das plantas daninhas malícia (Mimosa pudica) e mata-pasto (Senna obtusifolia). Avaliou-se a interferência do pH (3,0 e 9,0) da solução na atividade alelopática das substâncias sobre a germinação das sementes da espécie malícia. Os triterpenoides lupenona (3-oxolup-20(29)-eno) e lupeol (3β-hidroxilup-20(29)-eno), obtidos das folhas caídas da planta doadora, isolados e em par, evidenciaram baixo efeito alelopático inibitório da germinação de sementes e do crescimento do hipocótilo, especialmente do primeiro, cujos efeitos não ultrapassaram o valor de 2,0%. Os efeitos promovidos sobre o crescimento da radícula foram de maior magnitude, atingindo valores superiores a 40%, com destaque para as inibições promovidas pela substância lupenona. Isoladamente, as substâncias promoveram efeitos superiores aos efetivados pelas substâncias analisadas em pares, indicando a existência de antagonismo. O pH da solução influenciou a atividade alelopática das substâncias; para lupenona os efeitos foram mais intensos em pH ácido, enquanto para lupeol os melhores resultados foram verificados em condições alcalinas, mostrando que este fator é ponto importante a ser considerado em trabalhos de campo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se com este trabalho avaliar o potencial de lixiviação do ametryn num Argissolo Vermelho-Amarelo e num Latossolo Vermelho-Amarelo utilizados com pastagens no Brasil, com diferentes valores de pH. Para isso, foram avaliados 120 tratamentos (quatro solos associados a três intensidades de chuva e 10 profundidades), em parcela subdividida no delineamento inteiramente casualizado, com três repetições. Colunas de PVC de 50 cm de comprimento por 10 cm de diâmetro foram preenchidas com os solos e umedecidas; em seguida, aplicou-se o herbicida e simularam-se chuvas no topo delas, nas intensidades especificadas de acordo com o tratamento. Após 72 horas, todas as colunas foram dispostas na posição horizontal e abertas longitudinalmente, coletando-se amostras dos solos a cada intervalo de 5 cm de profundidade, para posterior extração e quantificação do herbicida e análise por cromatografia líquida de alta eficiência - CLAE. Posteriormente, no restante das amostras de solo, semeou-se ao longo de cada coluna a espécie indicadora Cucumis sativus. Concluiu-se que solos com baixo teor de matéria orgânica e/ou pH mais elevado apresentaram maiores índices de lixiviação do ametryn. Além disso, o método do bioensaio foi mais eficiente na confirmação da lixiviação do ametryn em comparação à CLAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abutilon theophrasti and Barnyardgrass (Echinochloa crus-galli) are major weeds that affect cropping systems worldwide. Laboratory and greenhouse studies were conducted to determine the effects of temperature, pH, water and salinity stress, and planting depth on seed germination and seedling emergence of Velvetleaf and Barnyardgrass. For Velvetleaf, the base, optimum and ceiling germination temperatures were estimated as 5, 35 and 48 ºC, respectively. Seed germination was sensitive to drought stress and completely inhibited by a potential of -0.6 MPa, but it was tolerant to salinity. Salinity stress up to 45 mM had no effect on the germination of Velvetleaf, but germination decreased with increasing salt concentration. Drought and salinity levels for 50% inhibition of maximum germination were -0.3 MPa and 110 mM, respectively. Seed germination of Velvetleaf was tolerant to a wide range of pH levels. For Barnyardgrass, the base, optimum and ceiling germination temperatures were estimated as 5, 38 and 45 ºC, respectively. Seed germination was tolerant to drought stress and completely inhibited by a potential of -1.0 MPa. Salinity stress up to 250 mM had no effect on seed germination. Drought and salinity levels for 50% inhibition of maximum germination were -0.5 MPa and 307 mM, respectively. A high percentage of seed germination was observed at pH=5 and decreased to 61.5% at acidic medium (pH 4) and to 11% at alkaline medium (pH 9). Maximum seedling emergence of Velvetleaf and Barnyardgrass occurred when the seeds were placed on the surface of the soil or at a depth of 1 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stabilizing free energy of ß-trypsin was determined by hydrogen ion titration. In the pH range from 3.0 to 7.0, the change in free energy difference for the stabilization of the native protein relative to the unfolded one (D D G0 titration) was 9.51 ± 0.06 kcal/mol. An isoelectric point of 10.0 was determined, allowing us to calculate the Tanford and Kirkwood electrostatic factor w. This factor presented a nonlinear behavior and indicated more than one type of titratable carboxyl groups in ß-trypsin. In fact, one class of carboxyl group with a pK = 3.91 ± 0.01 and another one with a pK = 4.63 ± 0.03 were also found by hydrogen ion titration of the protein in the folded state

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermediate filament (IF) proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP) expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGFß, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carboxyl-terminal (CT) domain of connexin43 (Cx43) has been implicated in both hormonal and pH-dependent gating of the gap junction channel. An in vitro assay was utilized to determine whether the acidification of cell extracts results in the activation of a protein kinase that can phosphorylate the CT domain. A glutathione S-transferase (GST)-fusion protein was bound to Sephadex beads and used as a target for protein kinase phosphorylation. A protein extract produced from sheep heart was allowed to bind to the fusion protein-coated beads. The bound proteins were washed and then incubated with 32P-ATP. Phosphorylation was assessed after the proteins were resolved by SDS-PAGE. Incubation at pH 7.5 resulted in a minimal amount of phosphorylation while incubation at pH 6.5 resulted in significant phosphorylation reaction. Maximal activity was achieved when both the binding and kinase reactions were performed at pH 6.5. The protein kinase activity was stronger when the incubations were performed with manganese rather than magnesium. Mutants of Cx43 which lack the serines between amino acids 364-374 could not be phosphorylated in the in vitro kinase reaction, indicating that this is a likely target of this reaction. These results indicate that there is a protein kinase activity in cells that becomes more active at lower pH and can phosphorylate Cx43.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study analyzes Na+ and K+ disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2+-free, and Ca2+-enriched (~500 µmol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 ± 84 nmol g-1 h-1 during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 ± 73 nmol g-1 h-1) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70% loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolving cellulose is the first main step in preparing novel cellulosicmaterials. Since cellulosic fibres cannot be easily dissolved in water-based solvents, fibres were pretreated with ethanol-acid solution prior to the dissolution. Solubility and changes on the surface of the fibres were studied with microscopy and capillary viscometry. After the treatment, the cellulose fibres were soluble in alkaline urea-water solvent. The nature of this viscous solution was studied rheologically. Cellulose microspheres were prepared by extruding the alkaline cellulose solution through the needle into an acidic medium. By altering the temperature and acidity of the mediumit was possible to adjust the specific surface area and pore sizes of themicrospheres. A typical skin-core structure was found in all samples. Microspheres were oxidised in order to introduce anionic carboxylic acid groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake increased 25 times after oxidation and they could swell almost to their original state (88%) after drying and shrinking. Swelling was studied in simulated physiological environments, corresponding to stomach acid and intestines (pH 1.2-7.4). Oxidised microspheres were used as a drug carriers. They demonstrated a highmass uniformity, which would enable their use for personalised dosing among different patients, including children. The drug was solidified in microspheres in amorphous form. This enhanced solubility and could be used for more challenging drugs with poor solubility. The pores of themicrospheres also remained open after the drug was loaded and they were dried. Regardless of the swelling, the drug was released at a constant rate in all environments.