951 resultados para Acesso aberto
Resumo:
Heparin is a pharmaceutical animal widely used in medicine due to its potent anticoagulant effect. Furthermore, it has the ability to inhibit the proliferation, invasion and adhesion of cancer cells to vascular endothelium. However, its clinical applicability can be compromised by side effects such as bleeding. Thus, the search for natural compounds with low bleeding risk and possible therapeutic applicability has been targeted by several research groups. From this perspective, this study aims to evaluate the hemorrhagic and anticoagulant activities and citotoxic effect for different tumor cell lines (HeLa, B16-F10, HepG2, HS-5,) and fibroblast cells (3T3) of the Heparin-like from the crab Chaceon fenneri (HEP-like). The HEP-like was purified after proteolysis, ion-exchange chromatography, fractionation with acetone and characterized by electrophoresis (agarose gel) and enzymatic degradation. Hep-like showed eletroforetic behavior similar to mammalian heparin, and high trisulfated /Nacetylated disaccharides ratio. In addition, HEP-like presented low in vitro anticoagulant activity using aPTT and a minor hemorrhagic effect when compared to mammalian heparin. Furthermore, the HEP-like showed significant cytotoxic effect (p<0.001) on HeLa, HepG2 and B16-F10 tumor cells with IC50 values of 1000 ug/mL, after incubation for 72 hours. To assess the influence of heparin-like on the cell cycle in HeLa cells, analysis was performed by flow cytometry. The results of this analysis showed that HEP-like influence on the cell cycle increasing S phase and decreasing phase G2. Thus, these properties of HEP-like make these compounds potential therapeutic agents
Resumo:
The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The plants are often exposed to variations in environmental conditions that may trigger metabolic disturbances leading to a consequent loss in productivity of crops. These stressful conditions usually induce an accumulation of reactive oxygen species (ROS) in the cell, a condition known how oxidative stress. Among these species, hydrogen peroxide (H2O2) is an important molecule involved in numerous signaling mechanisms. The present study aimed to understand the relationship between the different enzymatic mechanisms of elimination of H2O2 by catalase (CAT) and ascorbate peroxidase (APX) in leaf tissues of seedlings of the species Vigna unguiculata L. Walp, under conditions of oxidative stress induced by application of CAT inhibitor, 3-amino-1,2,4-triazole (3-AT), and H2O2 itself on the roots. Three experiments were conducted. The first experiment was performed applying the compound 3-AT (5 mM) during the time (hours). In the second experiment, seedlings were exposed to different concentrations of H2O2 (2.5, 5.0, 7.5, 10 mM) for 48 h. The third strategy included the pre-treatment with H2O2 (2.5 mM) for 24 h, followed by subsequent treatment with the inhibitor 3-AT and recovery control condition. Treatment with 3-AT causes a strong inhibition of CAT activity in leaf tissues accompanied by an increase of activity of APX. However a decrease in oxidative damage to lipids is not observed as indicated by TBARS. It was observed that activity of APX is directly linked to the content of peroxide. Inductions in the activities of CAT and APX were observed mainly in the seedlings treated with 2.5 mM H2O2. This can be associated with a decrease in oxidative damage to lipids. In contrast, one same tendency was not observed in treatments with higher concentrations of this ROS. These results suggest that the concentration of 2.5 mM H2O2 can induce responses antioxidants later in seedling cowpea. This concentration when applied as pre-treatment for 24 h promoted an induction systems removers CAT and APX, both in activity and in terms of gene expression. However this increment was not observed in the recovered plants and the plants subsequently subjected to 3-AT. Additionally, the pretreatment was not sufficient to attenuate the inhibition of CAT activity and oxidative damage to lipids caused by the subsequent application of this inhibitor. The results showed that the application of 3-AT and H2O2 in the root systems of seedlings of cowpea promote changes in the parameters analyzed in leaf tissues that indicate a direct response to the presence of these factors or systemic signaling mecanisms. H2O2 appears to activate the responses of two antioxidant systems in this study thar does not promote greater protection in case of additional treatment with 3-AT. This demonstrates the importance of the CAT system. In this work, complete results indicate that there is a difference between the signaling and the effects caused by exposure to H2O2 and by treatment with 3-AT
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action
Resumo:
Leishmania infantum and Trypanosoma cruzi are trypanosomatids of medical importance and are, respectively, the etiologic agents of visceral leishmaniasis (VL) and Chagas disease (CD) in Brazil. People infected with L. infantum or T. cruzi may develop asymptomatically, enabling the transmission of pathogens through blood transfusion and / or organs. The assessment of the infection by T. cruzi is included among the tests performed for screening blood donors in Brazil, however, there is no availability of tests for Leishmania. Serological tests for T. cruzi are very sensitive, but not specific, and may have cross-reactions with other microorganisms. Thus, the aim of this study was to determine the prevalence of Leishmania infection in blood donors and assess whether the serological test for T. cruzi detect L. infantum. Among the 300 blood samples from donors, discarded in 2011, 61 were T. cruzi positive, 203 were from donors with other infections and 36 were from handbags with low blood volume, but without infection. We also assessed 144 samples from donors without infections and able to donate blood, totaling 444 subjects. DNA was extracted from blood samples of all to perform quantitative PCR (qPCR) to detect Leishmania DNA. The buffy coat obtained from all samples was grown in Schneider medium supplemented and NNN. All samples were evaluated for the presence of anti-Leishmania antibody. The serological results indicate a percentage of 22% of Leishmania infection in blood samples obtained from discarded bags. A total of 60% of samples positive in ELISA for T. cruzi were negative by IFI, used as confirmatory test, ie 60% false positive for Chagas. Among these samples false positive for Chagas, 72% were positive by ELISA for Leishmania characterizing the occurrence of cross reaction between serologic assays. Of the 300 cultures performed, 18 grew parasites that were typed by qPCR and specific isoenzymes, found the species Leishmania infantum crops. Among the 18 cultures, 4 were purged from scholarships for low volume and all negative serology blood bank, thus demonstrating that there is a real risk of Leishmania transmission via transfusion. It is concluded that in an area endemic for leishmaniasis in Brazil, serological diagnosis performed to detect infection by T. cruzi among blood donors can identify infection by L. infantum and although cause false positive for Chagas, this cross-reactivity reduces the risk of Leishmania infection via blood transfusion, since tests are not applied specific detection of the parasite. In this way, there remains the need to discuss the implementation of a specific serological screening test for Leishmania in endemic countries such as Brazil
Resumo:
Lectin obtained from the marine sponge Tedania ignis was purified and characterized by extraction of soluble proteins (crude extract) in 50mM Borax, pH 7.5. The purification procedure was carried out by crude extract precipitation with ammonium sulfate 30% (FI). The precipitated was resuspended in the same buffer and fractionated with acetone 1.0 volume (F1.0). A lectin was purified from this specific fraction by using an affinity chromatography Sepharose 6B. This lectin preferentially agglutinated human erythrocytes from B type previously treated with papain enzyme. The hemagglutinating activity lectin was dependent of divalent Mn2+ cation and was inhibited by the carbohydrates galactose, xylose and fructose. SDS-PAGE analysis indicated a molecular mass of the lectin around 45 kDa. This protein showed stability until 40°C for 1 h. Further, it showed activity between pH 2.5 and 11.5, with an enhanced activity at pH 7.5. Leishmania chagasi promastigotes stained with Coomassie brilliant blue R-250 were agglutinated by F1,0 and in the presence of galactose this interaction was abolished. These results show that this lectin could be implicated in defense procedures and it will can be used as biological tools in studies with this protozoon
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
Globulins fractions of legume seeds of Crotalaria pallida, Erytrina veluntina and Enterolobium contortisiliquum were isolated and submitted to assays against serine, cysteine and aspartic proteinases, as also amylase present in midgut of C. maculatus and Z. subfasciatus. Hemagglutination assays indicated presence of a lectin in E. veluntina globulin fractions. This lectin had affinity to human erythrocytes type A, B and O. Vicilins were purified by chromatography on Sephacryl S-300 followed of a chromatography on Sephacryl S-200, which was calibrated using protein markers. Vicilins from C. pallida (CpV) and E. veluntina (EvV) seeds had a molecular mass of 124.6 kDa and E. contortisiliquum a molecular mass of 151kDa. Eletrophoresis in presence of SDS showed that CpV was constituted by four subunities with apparent molecular mass of 66, 63, 57 and 45 kDa, EvV with three subunities with apparent molecular mass of 45kDa and EcV four subunities, two with 37.1 kDa and two with 25.8 kDa. Non denaturantig eletrophoresis displayed single bands with high homogeneity, where CpV had lower acidic behavior. All vicilins are glycoproteins with carbohydrate contents at 1 to1.5%. Bioassays were done to detect deleterious effects of vicilins against C. maculatus and Z. subfasciatus larvae. CpV, EvV and EcV exhibited a WD50 of 0.28, 0.19 and 1.03%; LD50 0.2, 0.26, and 1.11% respectively to C. maculatus. The dose responses of CpV, EvV and EcV to Z. subfasciatus were: WD50 of 0.12, 0.14, 0.65% and LD50 of 0.09, 0.1, and 0.43% respectively. The mechanism of action of these proteins to bruchids should be based on their properties of bind to chitin present in mid gut of larvae associated with the low digestibility of vicilin. In assays against phytopatogenous fungus, only EcV was capable of inhibit F. solani growth at concentrations of 10 and 20 µg and its action mechanism should be also based in the affinity of EcV to chitin present in the fungi wall
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Fucans are a family of sulfated homo and teropolysaccharides respectively, composed mainly of a- (1®2) and a- (1®3) linked by L-fucose residues. Properties such as the ability to act as an anti-contraceptive, to reduce cholesterol levels, and to act as an anti-tumor agent are much related. We have focused our attention on the anticoagulant properties, platelet aggregation, hemorrhagic activity and complement system in vitro of commercial fucoidan (F) and their purified fractions (F1, F2 and F3) from Fucus vesiculosus obtained from fractionation of the fucoidan with different concentrations of acetone 1, 2 and 3v. These compounds were chemically characterized and the fucoidan (F) was modified by desulfation. The anticoagulant activity of the compounds was assessment by activated partial thromboplastin time (APTT) and prothrombine time assay (PT) using citrated normal human plasma. The results of APPT test showed that F, F1 and F2 have high anticoagulants activities 240.0 s (5 µg). The F3 showed 73.7 s in the same concentrations. The results obtained with PT test to F, F1, F2 and F3 were 81.5 s, 120.0 s, 57.1 and 32.5 s respectively with 50 µg. The dessulfated polymer showed a decrease in the anticoagulant activity in these two tests. Platelet aggregation assay was measured turbidimetrically with platelet aggregometer by method of Born. The aggregation platelet with F and fractions F1, F2 and F3 exhibited a two-phase answer in the concentration of 5 mg/mL with maximum aggregation of 76.36 ± 10.3% ; 69.54 ± 9.40%; 75.94 ± 9.01%; 51.13 ± 9.59% respectively. However, was observed a hipoaggregate profile F (15.17 ± 5.2%), F1 (7.40 ± 3.04 %), F2 (19.1 ± 5.41%) and F3 (5.09 ± 3.02%) at 0.1 mg/mL. The hemorrhagic activity assay was carried in Wistar rats and showed that these compounds have low hemorrhagic effect when compared to heparin. The complement system ( alternative pathway was made using non-sensibilized rabbit red blood cells The results of complement system essay showed that F , F2 and F3 have action inhibitory in relation to the group control 0.544, 0.697, 0.622 and 0.958 respectively The results showed that these compounds have action on this system. Interaction of the polisaccharides with proteins C3 and C4 showed that the fraction F1 stimulated the activity assay hemolytic using red blood cells
Resumo:
Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased
Resumo:
Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents