928 resultados para Absolute, The.
Resumo:
Huntington’s disease (HD) is a fatal, neurodegenerative disease for which there is no known cure. Proxy evaluation is relevant for HD as its manifestation might limit the ability of persons to report their health-related quality of life (HrQoL). This study explored patient–proxy ratings of HrQoL of persons at different stages of HD, and examined factors that may affect proxy ratings. A total of 105 patient–proxy pairs completed the Huntington’s disease health-related quality of life questionnaire (HDQoL) and other established HrQoL measures (EQ-5D and SF-12v2). Proxy–patient agreement was assessed in terms of absolute level (mean ratings) and intraclass correlation. Proxies’ ratings were at a similar level to patients’ self-ratings on an overall Summary Score and on most of the six Specific Scales of the HDQoL. On the Specific Hopes and Worries Scale, proxies on average rated HrQoL as better than patients’ self-ratings, while on both the Specific Cognitive Scale and Specific Physical and Functional Scale proxies tended to rate HrQoL more poorly than patients themselves. The patient’s disease stage and mental wellbeing (SF-12 Mental Component scale) were the two factors that primarily affected proxy assessment. Proxy scores were strongly correlated with patients’ self-ratings of HrQoL, on the Summary Scale and all Specific Scales. The patient–proxy correlation was lower for patients at moderate stages of HD compared to patients at early and advanced stages. The proxy report version of the HDQoL is a useful complementary tool to self-assessment, and a promising alternative when individual patients with advanced HD are unable to self-report.
Resumo:
We present an outlook on the climate system thermodynamics. First, we construct an equivalent Carnot engine with efficiency and frame the Lorenz energy cycle in a macroscale thermodynamic context. Then, by exploiting the second law, we prove that the lower bound to the entropy production is times the integrated absolute value of the internal entropy fluctuations. An exergetic interpretation is also proposed. Finally, the controversial maximum entropy production principle is reinterpreted as requiring the joint optimization of heat transport and mechanical work production. These results provide tools for climate change analysis and for climate models’ validation.
Resumo:
With the increasing pace of change, organisations have sought new real estate solutions which provide greater flexibility. What appears to be required is not flexibility for all uses but appropriate flexibility for the volatile, risky and temporal part of a business. This is the essence of the idea behind the split between the core and periphery portfolio. The serviced office has emerged to fill the need for absolute flexibility. This market is very diverse in terms of the product, services and target market. It has grown and gained credibility with occupiers and more recently with the property investment market. Occupiers similarly use this space in a variety of ways. Some solely occupy serviced space while others use it to complement their more permanent space. It therefore appears that the market is fulfilling the role of providing periphery space for at least some of the occupiers. In all instances the key to this space is a focus on financial and tenurial flexibility which is not provided by other types of business space offered.
Resumo:
The ability to run General Circulation Models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model (HadGEM1), with horizontal resolution increasing from approximately 270km to 60km (at 50N), is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity and low-level absolute vorticity are dominant, while in the North Pacific basins mid-level relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behaviour, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.
Resumo:
In Listeria monocytogenes the alternative sigma factor σB plays important roles in both virulence and stress tolerance. In this study a proteomic approach was used to define components of the σB regulon in L. monocytogenes 10403S (serotype 1/2a). Using two-dimensional gel electrophoresis and the recently developed isobaric tags for relative and absolute quantitation technique, the protein expression profiles of the wild type and an isogenic ΔsigB deletion strain were compared. Overall, this study identified 38 proteins whose expression was σB dependent; 17 of these proteins were found to require the presence of σB for full expression, while 21 were expressed at a higher level in the ΔsigB mutant background. The data obtained with the two proteomic approaches showed limited overlap (four proteins were identified by both methods), a finding that highlights the complementarity of the two technologies. Overall, the proteomic data reaffirmed a role for σB in the general stress response and highlighted a probable role for σB in metabolism, especially in the utilization of alternative carbon sources. Proteomic and physiological data revealed the involvement of σB in glycerol metabolism. Five newly identified members of the σB regulon were shown to be under direct regulation of σB using reverse transcription-PCR (RT-PCR), while random amplification of cDNA ends-PCR was used to map four σB-dependent promoters upstream from lmo0796, lmo1830, lmo2391, and lmo2695. Using RT-PCR analysis of known and newly identified σB-dependent genes, as well as proteomic analyses, σB was shown to play a major role in the stationary phase of growth in complex media.
Resumo:
Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the ‘Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance’ (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm−1 with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.
Resumo:
This study presents the first global-scale multi-sectoral regional assessment of the magnitude and uncertainty in the impacts of climate change avoided by emissions policies. The analysis suggests that the most stringent emissions policy considered here – which gives a 50% chance of remaining below a 2oC temperature rise target - reduces impacts by 20-65% by 2100 relative to a ‘business-as-usual’ pathway (A1B) which reaches 4oC, and can delay impacts by several decades. Effects vary between sector and region, and there are few noticeable effects of mitigation policy by 2030. The impacts avoided by 2100 are more strongly influenced by the date and level at which emissions peak than the rate of decline of emissions, with an earlier and lower emissions peak avoiding more impacts. The estimated proportion of impacts avoided at the global scale is relatively robust despite uncertainty in the spatial pattern of climate change, but the absolute amount of avoided impacts is considerably more variable and therefore uncertain.
Resumo:
The authors estimate climate warming–related twenty-first-century changes of moisture transports from the descending into the ascending regions in the tropics. Unlike previous studies that employ time and space averaging, here homogeneous high horizontal and vertical resolution data from an Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) climate model are used. This allows for estimating changes in much greater detail (e.g., the estimation of the distribution of ascending and descending regions, changes in the vertical profile, and separating changes of the inward and outward transports). Low-level inward and midlevel outward moisture transports of the convective regions in the tropics are found to increase in a simulated anthropogenically warmed climate as compared to a simulated twentieth-century atmosphere, indicating an intensification of the hydrological cycle. Since an increase of absolute inward transport exceeds the absolute increase of outward transport, the resulting budget is positive, meaning that more water is projected to converge in the moist tropics. The intensification is found mainly to be due to the higher amount of water in the atmosphere, while the contribution of weakening wind counteracts this response marginally. In addition the changing statistical properties of the vertical profile of the moisture transport are investigated and the importance of the substantial outflow of moisture from the moist tropics at midlevels is demonstrated.
Resumo:
Numerical forecasts of the atmosphere based on the fundamental dynamical and thermodynamical equations have now been carried for almost 30 years. The very first models which were used were drastic simplifications of the governing equations and permitting only the prediction of the geostrophic wind in the middle of the troposphere based on the conservation of absolute vorticity. Since then we have seen a remarkable development in models predicting the large-scale synoptic flow. Verification carried out at NMC Washington indicates an improvement of about 40% in 24h forecasts for the 500mb geopotential since the end of the 1950’s. The most advanced models of today use the equations of motion in their more original form (i.e. primitive equations) which are better suited to predicting the atmosphere at low latitudes as well as small scale systems. The model which we have developed at the Centre, for instance, will be able to predict weather systems from a scale of 500-1000 km and a vertical extension of a few hundred millibars up to global weather systems extending through the whole depth of the atmosphere. With a grid resolution of 1.5 and 15 vertical levels and covering the whole globe it is possible to describe rather accurately the thermodynamical processes associated with cyclone development. It is further possible to incorporate sub-grid-scale processes such as radiation, exchange of sensible heat, release of latent heat etc. in order to predict the development of new weather systems and the decay of old ones. Later in this introduction I will exemplify this by showing some results of forecasts by the Centre’s model.
Resumo:
The dynamics of Northern Hemisphere major midwinter stratospheric sudden warmings (SSWs) are examined using transient climate change simulations from the Canadian Middle Atmosphere Model (CMAM). The simulated SSWs show good overall agreement with reanalysis data in terms of composite structure, statistics, and frequency. Using observed or model sea surface temperatures (SSTs) is found to make no significant difference to the SSWs, indicating that the use of model SSTs in the simulations extending into the future is not an issue. When SSWs are defined by the standard (wind based) definition, an absolute criterion, their frequency is found to increase by;60% by the end of this century, in conjunction with a;25% decrease in their temperature amplitude. However, when a relative criterion based on the northern annular mode index is used to define the SSWs, no future increase in frequency is found. The latter is consistent with the fact that the variance of 100-hPa daily heat flux anomalies is unaffected by climate change. The future increase in frequency of SSWs using the standard method is a result of the weakened climatological mean winds resulting from climate change, which make it easier for the SSW criterion to be met. A comparison of winters with and without SSWs reveals that the weakening of the climatological westerlies is not a result of SSWs. The Brewer–Dobson circulation is found to be stronger by ;10% during winters with SSWs, which is a value that does not change significantly in the future.
Resumo:
This chapter looks into the gap between presentational realism and the representation of physical experience in Werner Herzog's work so as to retrieve the indexical trace – or the absolute materiality of death. To that end, it draws links between Herzog and other directors akin to realism in its various forms, including surrealism. In particular, it focuses on François Truffaut and Glauber Rocha, representing respectively the Nouvelle Vague and the Cinema Novo, whose works had a decisive weight on Herzog’s aesthetic choices to the point of originating distinct phases of his outputs. The analyses, though restricted to a small number of films, intends to re-evaluate Herzog’s position within, and contribution to, film history.
Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany
Resumo:
A physically based gust parameterisation is added to the atmospheric mesoscale model FOOT3DK to estimate wind gusts associated with storms over West Germany. The gust parameterisation follows the Wind Gust Estimate (WGE) method and its functionality is verified in this study. The method assumes that gusts occurring at the surface are induced by turbulent eddies in the planetary boundary layer, deflecting air parcels from higher levels down to the surface under suitable conditions. Model simulations are performed with horizontal resolutions of 20 km and 5 km. Ten historical storm events of different characteristics and intensities are chosen in order to include a wide range of typical storms affecting Central Europe. All simulated storms occurred between 1990 and 1998. The accuracy of the method is assessed objectively by validating the simulated wind gusts against data from 16 synoptic stations by means of “quality parameters”. Concerning these parameters, the temporal and spatial evolution of the simulated gusts is well reproduced. Simulated values for low altitude stations agree particularly well with the measured gusts. For orographically exposed locations, the gust speeds are partly underestimated. The absolute maximum gusts lie in most cases within the bounding interval given by the WGE method. Focussing on individual storms, the performance of the method is better for intense and large storms than for weaker ones. Particularly for weaker storms, the gusts are typically overestimated. The results for the sample of ten storms document that the method is generally applicable with the mesoscale model FOOT3DK for mid-latitude winter storms, even in areas with complex orography.
Resumo:
We present a statistical analysis of the time evolution of ground magnetic fluctuations in three (12–48 s, 24–96 s and 48–192 s) period bands during nightside auroral activations. We use an independently derived auroral activation list composed of both substorms and pseudo-breakups to provide an estimate of the activation times of nightside aurora during periods with comprehensive ground magnetometer coverage. One hundred eighty-one events in total are studied to demonstrate the statistical nature of the time evolution of magnetic wave power during the ∼30 min surrounding auroral activations. We find that the magnetic wave power is approximately constant before an auroral activation, starts to grow up to 90 s prior to the optical onset time, maximizes a few minutes after the auroral activation, then decays slightly to a new, and higher, constant level. Importantly, magnetic ULF wave power always remains elevated after an auroral activation, whether it is a substorm or a pseudo-breakup. We subsequently divide the auroral activation list into events that formed part of ongoing auroral activity and events that had little preceding geomagnetic activity. We find that the evolution of wave power in the ∼10–200 s period band essentially behaves in the same manner through auroral onset, regardless of event type. The absolute power across ULF wave bands, however, displays a power law-like dependency throughout a 30 min period centered on auroral onset time. We also find evidence of a secondary maximum in wave power at high latitudes ∼10 min following isolated substorm activations. Most significantly, we demonstrate that magnetic wave power levels persist after auroral activations for ∼10 min, which is consistent with recent findings of wave-driven auroral precipitation during substorms. This suggests that magnetic wave power and auroral particle precipitation are intimately linked and key components of the substorm onset process.
Resumo:
It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.
Resumo:
One central question in the formal linguistic study of adult multilingual morphosyntax (i.e., L3/Ln acquisition) involves determining the role(s) the L1 and/or the L2 play(s) at the L3 initial state (e.g., Bardel & Falk, Second Language Research 23: 459–484, 2007; Falk & Bardel, Second Language Research: forthcoming; Flynn et al., The International Journal of Multilingualism 8: 3–16, 2004; Rothman, Second Language Research: forthcoming; Rothman & Cabrelli, On the initial state of L3 (Ln) acquisition: Selective or absolute transfer?: 2007; Rothman & Cabrelli Amaro, Second Language Research 26: 219–289, 2010). The present article adds to this general program, testing Rothman's (Second Language Research: forthcoming) model for L3 initial state transfer, which when relevant in light of specific language pairings, maintains that typological proximity between the languages is the most deterministic variable determining the selection of syntactic transfer. Herein, I present empirical evidence from the later part of the beginning stages of L3 Brazilian Portuguese (BP) by native speakers of English and Spanish, who have attained an advanced level of proficiency in either English or Spanish as an L2. Examining the related domains of syntactic word order and relative clause attachment preference in L3 BP, the data clearly indicate that Spanish is transferred for both experimental groups irrespective of whether it was the L1 or L2. These results are expected by Rothman's (Second Language Research: forthcoming) model, but not necessarily predicted by other current hypotheses of multilingual syntactic transfer; the implications of this are discussed.