837 resultados para AML Schema (XSD)
Resumo:
Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.
Resumo:
Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.
Resumo:
Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.
Resumo:
PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of <1 x>10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.
Resumo:
Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^
Resumo:
Secondary acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) have been recognized as one of the most feared long-term complications of cancer therapy. The aim of this case-control study was to determine the prevalence of chromosomal abnormalities and family history of cancer among secondary AML/MDS cases and de novo AML/MDS controls. Study population were 332 MD Anderson Cancer Center patients who were registered between 1986 and 1994. Cases were patients who had a prior invasive cancer before diagnoses of AML/MDS and controls were de novo AML/MDS. Cases (166) and controls (166) were frequency matched on age $\pm$5 years, sex and year of diagnosis of leukemia. Cytogenetic data were obtained from the leukemia clinic database of MD Anderson Cancer Center and data on family history of cancer and other risk factors were abstracted from the patients' medical record. The distribution of AML and MDS among cases was 58% and 42% respectively and among controls 67% and 33% respectively. Prevalence of chromosomal abnormalities were observed more frequently among cases than controls. Reporting of family history of cancer were similar among both groups. Univariate analysis revealed an odds ratio (OR) of 2.8 (95% CI 1.5-5.4) for deletion of chromosome 7, 1.9 (95% CI 0.9-3.8) for deletion of chromosome 5, 2.3 (95% CI 0.8-6.2) for deletion of 5q, 2.0 (95% CI 1.0-4.2) for trisomy 8, 1.3 (95% CI 0.8-2.1) for chromosomal abnormalities other than chromosome 5 or 7 and 1.3 (95% CI 0.8-2.0) for family history of cancer in a first degree relative. The OR remained significant for deletion of chromosome 7 (2.3, 95% CI 1.1-4.8) after adjustment for age, alcohol, smoking, occupation related to chemical exposure and family history of cancer in a first degree relative. Of the 166 secondary AML/MDS patients 70% had a prior solid tumor and 30% experienced hematological cancers. The most frequent cancers were breast (21.1%), non-Hodgkin lymphoma (13.3%), Hodgkin's disease (10.2%), prostate (7.2%), colon (6%), multiple myeloma (3.6%) and testes (3.0%). The majority of these cancer patients were treated with chemotherapy or radiotherapy or both. Abnormalities of chromosome 5 or 7 were found to be more frequent in secondary AML/MDS patients with prior hematological cancer than patients with prior solid tumors. Median time to develop secondary AML/MDS was 5 years. However, secondary AML/MDS among patients who received chemotherapy and had a family history of cancer in a first degree relative occurred earlier (median 2.25 $\pm$ 0.9 years) than among patients without such family history (median 5.50 $\pm$ 0.18 years) (p $<$.03). The implication of exposure to chemotherapy among patients with a family history of cancer needs to be further investigated. ^
Resumo:
The goal of the present work was to identify and characterize gene sequences that are preferentially expressed in CML in an effort to better understand the molecular basis of the disease. As high abundance mRNAs generally encode proteins that are phenotypically characteristic of cells, positive-negative screening of a CML cDNA library was used to identify cDNA clones containing sequences preferentially transcribed in CML. One cDNA sequence that fulfilled this criterion, C-A3, has been characterized in some detail. It represents a small mRNA ((TURN)496 nucleotides) that is highly abundant ((TURN)2% of the poly(A('+))RNA) in cells from the chronic phase of CML. In situ hybridization to whole cells indicates the principal leukocytes that express C-A3 sequences are eosinophils, basophils and immature myelocytes. Surprisingly, CML patients with high numbers of myeloblasts do not have an abundance of C-A3 transcripts, although transcript levels remain elevated in patients with lymphoblasts. In AML, high transcript levels are only found sporadically and occasionally different sized transcripts can be detected. Sequences from the 3' end of the C-A3 message are present in 2-5 copies per haploid genome. The 3' end of C-A3 localizes to bands 8q21.1 and 8q23 by in situ chromosomal hybridization. This is a region that is often involved in hematopoietic malignancies. Restriction digests of human genomic DNA show a correlation between the presence of a 2.3 kb Hind III fragment and certain types of leukemia. All of the leukemic DNAs tested had this fragment. In comparison, only one of five normal DNAs had a band this size. Analysis of the nucleotide sequence indicates that C-A3 probably encodes a small, hydrophobic peptide which may be part of a larger protein. ^
Resumo:
The body schema is a key component in accomplishing egocentric mental transformations, which rely on bodily reference frames. These reference frames are based on a plurality of different cognitive and sensory cues among which the vestibular system plays a prominent role. We investigated whether a bottom-up influence of vestibular stimulation modulates the ability to perform egocentric mental transformations. Participants were significantly faster to make correct spatial judgments during vestibular stimulation as compared to sham stimulation. Interestingly, no such effects were found for mental transformation of hand stimuli or during mental transformations of letters, thus showing a selective influence of vestibular stimulation on the rotation of whole-body reference frames. Furthermore, we found an interaction with the angle of rotation and vestibular stimulation demonstrating an increase in facilitation during mental body rotations in a direction congruent with rightward vestibular afferents. We propose that facilitation reflects a convergence in shared brain areas that process bottom-up vestibular signals and top-down imagined whole-body rotations, including the precuneus and tempero-parietal junction. Ultimately, our results show that vestibular information can influence higher-order cognitive processes, such as the body schema and mental imagery.
Resumo:
Background Nowadays there is extensive evidence available showing the efficacy of cognitive remediation therapies. Integrative approaches seem superior regarding the maintenance of proximal outcome at follow-up as well as generalization to other areas of functioning. To date, only limited evidence about the efficacy of CRT is available concerning elder schizophrenia patients. The Integrated Neurocognitive Therapy (INT) represents a new developed cognitive remediation approach. It is a manualized group therapy approach targeting all 11 NIMH-MATRICS dimensions within one therapy concept. In this study we compared the effects of INT on an early course group (duration of disease<5 years) to a long-term group of schizophrenia outpatients (duration of disease>15 years). Methods An international multicenter study carried out in Germany, Switzerland and Austria with a total of 90 outpatients diagnosed with Schizophrenia (DSM-IV-TR) were randomly assigned either to an INT-Therapy or to Treatment-As-Usual (TAU). 50 of the 90 Patients were an Early-Course (EC) group, suffering from schizophrenia for less than 5 years (Mean age=29 years, Mean duration of illness=3.3 years). The other 40 were a Long-term Course (LC) group, suffering from schizophrenia longer than 15 years (Mean age= 45 years, Mean duration of illness=22 years). Treatment comprised of 15 biweekly sessions. An extensive assessment battery was conducted before and after treatment and at follow up (1 year). Multivariate General Linear Models (GLM) (duration of illness x treatment x time) examined our hypothesis, if an EC group of schizophrenia outpatients differ in proximal and distal outcome from a LC group. Results Irrespective of the duration of illness, both groups (EC & LC) were able to benefit from the INT. INT was superior compared to TAU in most of the assessed domains. Dropout rate of EC group was much higher (21.4%) than LC group (8%) during therapy phase. However, interaction effects show that the LC group revealed significantly higher effects in the neurocognitive domains of speed of processing (F>3.6) and vigilance (F>2.4). In social cognition the EC group showed significantly higher effects in social schema (F>2.5) and social attribution (blame; F>6.0) compared to the LC group. Regarding more distal outcome, patients treated with INT obtained reduced general symptoms unaffected by the duration of illness during therapy phase and at follow-up (F>4.3). Discussion Results suggest that INT is a valid goal-oriented treatment to improve cognitive functions in schizophrenia outpatients. Irrespective of the duration of illness significant treatment, effects were evident. Against common expectations, long-term, more chronic patients showed higher effects in basal cognitive functions compared to younger patients and patients without any active therapy (TAU). Consequently, more integrated therapy offers are also recommended for long-term course schizophrenia patients.
Resumo:
Autologous stem cell transplantation (ASCT) is applied to consolidate first remission in patients with acute myeloid leukaemia (AML). However, outcome after ASCT widely varies among AML patients. We analyzed the prognostic significance of haematological recovery for neutrophils [absolute neutrophil count (ANC) >1·0 × 10(9) /l] and platelets (platelet count >20·0 × 10(9) /l), stratifying at day 20 after ASCT in 88 consecutive and homogeneously treated AML patients in first remission. We observed that patients with delayed recovery had better overall survival (OS; ANC: P < 0·0001 and platelets: P = 0·0062) and time to progression (TTP; ANC: P = 0·0003 and platelets: P = 0·0125). Delayed recovery was an independent marker for better OS and TTP in a multivariate analysis including age, gender, number of transfused CD34+ cells, cytogenetics, FLT3-internal tandem duplication and NPM1 mutation. Our results suggest that delayed neutrophil and platelet recovery is associated with longer OS and TTP in AML patients consolidated with ASCT in first remission.
Resumo:
INTRODUCTION Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. RESULTS For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n=88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n=91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n=91), which reflect the total neoplastic burden, revealed four patient groups with different survival. CONCLUSION AND PERSPECTIVE Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.
Resumo:
The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.
Resumo:
The preferred type of post-remission therapy (PRT) in patients with acute myeloid leukemia (AML) in first complete remission (CR1) is a subject of continued debate, especially in patients at higher risk of nonrelapse mortality (NRM), including patients >40 years of age. We report results of a time-dependent multivariable analysis of allogenic hematopoietic stem cell transplantation (alloHSCT) (n=337) versus chemotherapy (n=271) or autologous HSCT (autoHSCT) (n=152) in 760 patients aged 40-60 years with AML in CR1. Patients receiving alloHSCT showed improved overall survival (OS) as compared with chemotherapy (respectively, 57±3% vs 40±3% at 5 years, P<0.001). Comparable OS was observed following alloHSCT and autoHSCT in patients with intermediate-risk AML (60±4 vs 54±5%). However, alloHSCT was associated with less relapse (hazard ratio (HR) 0.51, P<0.001) and better relapse-free survival (RFS) (HR 0.74, P=0.029) as compared with autoHSCT in intermediate-risk AMLs. AlloHSCT was applied following myeloablative conditioning (n=157) or reduced intensity conditioning (n=180), resulting in less NRM, but comparable outcome with respect to OS, RFS and relapse. Collectively, these results show that alloHSCT is to be preferred over chemotherapy as PRT in patients with intermediate- and poor-risk AML aged 40-60 years, whereas autoHSCT remains a treatment option to be considered in patients with intermediate-risk AML.Leukemia advance online publication, 23 December 2014; doi:10.1038/leu.2014.332.
Resumo:
The p62/SQSTM1 adapter protein has an important role in the regulation of several key signaling pathways and helps transport ubiquitinated proteins to the autophagosomes and proteasome for degradation. Here, we investigate the regulation and roles of p62/SQSTM1 during acute myeloid leukemia (AML) cell maturation into granulocytes. Levels of p62/SQSTM1 mRNA and protein were both significantly increased during all-trans retinoic acid (ATRA)-induced differentiation of AML cells through a mechanism that depends on NF-κB activation. We show that this response constitutes a survival mechanism that prolongs the life span of mature AML cells and mitigates the effects of accumulation of aggregated proteins that occurs during granulocytic differentiation. Interestingly, ATRA-induced p62/SQSTM1 upregulation was impaired in maturation-resistant AML cells but was reactivated when differentiation was restored in these cells. Primary blast cells of AML patients and CD34(+) progenitors exhibited significantly lower p62/SQSTM1 mRNA levels than did mature granulocytes from healthy donors. Our results demonstrate that p62/SQSTM1 expression is upregulated in mature compared with immature myeloid cells and reveal a pro-survival function of the NF-κB/SQSTM1 signaling axis during granulocytic differentiation of AML cells. These findings may help our understanding of neutrophil/granulocyte development and will guide the development of novel therapeutic strategies for refractory and relapsed AML patients with previous exposure to ATRA.
Resumo:
Members of the WD-repeat protein interacting with phosphoinositides (WIPI) family are phosphatidylinositol 3-phosphate (PI3P) effectors that are essential for the formation of autophagosomes. Autophagosomes, unique double-membraned organelles, are characteristic for autophagy, a bulk degradation mechanism with cytoprotective and homeostatic function. Both, WIPI-1 and WIPI-2 are aberrantly expressed in several solid tumors, linking these genes to carcinogenesis. We now found that the expression of WIPI-1 was significantly reduced in a large cohort of 98 primary acute myeloid leukemia (AML) patient samples (complex karyotypes; t(8;21); t(15,17); inv(16)). In contrast, the expression of WIPI-2 was only reduced in acute promyelocytic leukemia (APL), a distinct subtype of AML (t(15,17)). As AML cells are blocked in their differentiation, we tested if the expression levels of WIPI-1 and WIPI-2 increase during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of APL. According to the higher WIPI-1 expression in granulocytes compared with immature blast cells, WIPI-1 but not WIPI-2 expression was significantly induced during neutrophil differentiation of NB4 APL cells. Interestingly, the induction of WIPI-1 expression was dependent on the transcription factor PU.1, a master regulator of myelopoiesis, supporting our notion that WIPI-1 expression is reduced in AML patients lacking proper PU-1 activity. Further, knocking down WIPI-1 in NB4 cells markedly attenuated the autophagic flux and significantly reduced neutrophil differentiation. This result was also achieved by knocking down WIPI-2, suggesting that both WIPI-1 and WIPI-2 are functionally required and not redundant in mediating the PI3P signal at the onset of autophagy in NB4 cells. In line with these data, downregulation of PI3KC3 (hVPS34), which generates PI3P upstream of WIPIs, also inhibited neutrophil differentiation. In conclusion, we demonstrate that both WIPI-1 and WIPI-2 are required for the PI3P-dependent autophagic activity during neutrophil differentiation, and that PU.1-dependent WIPI-1 expression is significantly repressed in primary AML patient samples and that the induction of autophagic flux is associated with neutrophil differentiation of APL cells.