954 resultados para ALLELE
Resumo:
Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa. Heredity (2010) 104, 148-154; doi:10.1038/hdy.2009.84; published online 29 July 2009
Resumo:
Psychotic symptoms are common in Alzheimer's disease (AD) and have a negative impact oil quality of life. It is suggested that psychotic symptoms may be attributed to genetic risk factors which are revealed during neurodegeneration. CHRNA7, the gene for the alpha 7 nicotinic acetylcholine receptor, has been associated with schizophrenia in linkage and association Studies. Hence we investigated single SNPs and haplotypes in CHRNA7 in relation to AD with psychosis in a large, well-characterised and previously described cohort within the Northern Ireland population. A significant association between delusions and the T allele of rs6494223 (P = 0.014, OR = 1.63, Cl 1.22-2.17) was found. This suggests that the alpha 7 receptor may be a suitable target for the treatment of AD with psychosis.
Resumo:
Factors that influence response to drug treatment are of increasing importance. We report an analysis of genetic factors affecting response to cholinesterase inhibitor therapy in 165 subjects with Alzheimer's disease (AD). The presence of apolipoprotein E e4 (APOE e4) allele was associated with early and late cognitive response to cholinesterase inhibitor treatment in mild AD (Mini-Mental State Examination (MMSE) greater than or equal to21) (P
Resumo:
PURPOSE:
To investigate whether variation in the distribution of the risk allele frequency of the Y402H single-nucleotide polymorphism (SNP) across various ethnicities and geographic regions reflects differences in the prevalence of late age-related macular degeneration (AMD) in those ethnicities.
METHODS:
Published data were obtained via a systematic search. Study samples were grouped into clusters by ethnicity and geographic location and the Spearman correlation coefficient of the prevalence of late AMD and risk allele frequencies was calculated across clusters.
RESULTS:
Across all ethnicities, AMD prevalence was seen to increase with age. Populations of European descent had both higher risk allele frequencies and prevalence of late AMD than did Japanese, Chinese, and Hispanic descendants. Results for African descendants were anomalous: although allele frequency was similar to that in European populations, the age-specific prevalence of late AMD was considerably lower. The correlation coefficient for the association between allele frequency and AMD prevalence was 0.40 (95% confidence interval [CI] = -0.36 to 0.84, P = 0.28) in all populations combined and 0.71 (95% CI = 0.02-0.94, P = 0.04) when people of African descent were excluded.
CONCLUSIONS:
Evidence was found at the population level to support a positive association between the Y204H risk allele and the prevalence of AMD after exclusion of studies undertaken on persons of African ancestry. Data in African, Middle Eastern, and South American populations are needed to provide a better understanding of the association of late AMD genetic risk across ethnicities.
Resumo:
A DNA typing procedure, based on a two stage polymerase chain reaction-sequence-specific oligonucleotide probe (PCR-SSOP) typing strategy, has been developed and applied to DNA from 1000 healthy individuals from the Northern Ireland region. The two-stage procedure involves human leukocyte antigen (HLA-C) identification through the use of a medium resolution PCR-SSOP system, followed by four secondary group specific PCR-SSOP systems, to enable allele resolution. The PCR-SSOP systems were designed for the identification of HLA-Cw alleles with possible discrimination within exons 2 and 3 of the HLA-C gene, i.e., HLA-Cw*01-Cw*16. PCR-SSP tests were designed for the resolution of HLA-Cw*17 and -Cw*18 alleles. The systems can also be used independently of each other if selective allele resolution is required. HLA-Cw allele frequencies occuring within the Northern Ireland population have been compiled, along with estimations of HLA-B/Cw haplotype frequencies. (C) American Society for Histocompatibility and Immunogenetics, 2002. Published by Elsevier Science Inc.
Resumo:
Alzheimer's disease is the most common neurodegenerative disorder affecting those in mid to late adult life. Carriage of an apolipoprotein E (apoE) epsilon 4 allele has been shown to be associated with an increased risk of developing AD in numerous studies involving populations of various races and ethnic backgrounds. It has also been suggested that carriage of this allele reduces the age of onset of AD. To investigate this, we carried out a genetic association study utilising 108 sporadic late-onset AD patients and age, sex and ethnically-matched controls from Northern Ireland. Findings of this study verified the risk of AD associated with carriage of the apoE epsilon 4 allele in a dose-dependent manner (p
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has been associated, sometimes controversially, with polymorphisms in a number of genes. Recently the butyrylcholinesterase K variant (BCHE K) allele has been shown to act in synergy with the apolipoprotein E epsilon4 (APOE epsilon4) allele to promote risk for AD. Most subsequent replicative studies have been unable to confirm these findings. We have conducted a case-control association study using a clinically well defined group of late onset AD patients (n=175) and age and sex matched control subjects (n=187) from the relatively genetically homogeneous Northern Ireland population to test this association. The BCHE genotypes of patients were found to be significantly different from controls (chi(2)=23.68, df=2, p
Resumo:
beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.
Resumo:
Objectives: We sought to replicate the association between the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism (rs20455), and clinical coronary artery disease (CAD).
Background: Recent prospective studies suggest that carriers of the 719Arg allele in KIF6 are at increased risk of clinical CAD compared with noncarriers.
Methods: The KIF6 Trp719Arg polymorphism (rs20455) was genotyped in 19 case-control studies of nonfatal CAD either as part of a genome-wide association study or in a formal attempt to replicate the initial positive reports.
Results: A total of 17,000 cases and 39,369 controls of European descent as well as a modest number of South Asians, African Americans, Hispanics, East Asians, and admixed cases and controls were successfully genotyped. None of the 19 studies demonstrated an increased risk of CAD in carriers of the 719Arg allele compared with noncarriers. Regression analyses and fixed-effects meta-analyses ruled out with high degree of confidence an increase of <2% in the risk of CAD among European 719Arg carriers. We also observed no increase in the risk of CAD among 719Arg carriers in the subset of Europeans with early-onset disease (younger than 50 years of age for men and younger than 60 years of age for women) compared with similarly aged controls as well as all non-European subgroups.
Conclusions: The KIF6 Trp719Arg polymorphism was not associated with the risk of clinical CAD in this large replication study.
Resumo:
Allozyme analyses have suggested that Neotropical orchid bee (Euglossini) pollinators are vulnerable because of putative high frequencies of diploid males, a result of loss of sex allele diversity in small hymenopteran populations with single locus complementary sex determination. Our analysis of 1010 males from 27 species of euglossine bees sampled across the Neotropics at 2-11 polymorphic microsatellite loci revealed only 5 diploid males at an overall frequency of 0.005 (95% CIs 0.002-0.010); errors through genetic non-detection of diploid males were likely small. In contrast to allozyme-based studies, we detected very weak or insignificant population genetic structure, even for a pair of populations >500 km apart, possibly accounting for low diploid male frequencies. Technical flaws in previous allozyme-based analyses have probably led to considerable overestimation of diploid male production in orchid bees. Other factors may have a more immediate impact on population persistence than the genetic load imposed by diploid males on these important Neotropical pollinators.
Resumo:
The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3' processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA-FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3' processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing.
Resumo:
The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR - 1.10, 95% CI: 1.03-1.18, P - 0.006 and HR - 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P 7 = 10 x (11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42%
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. Past studies have shown that the size of expanded CAG repeat is inversely associated with age at onset (AO) of HD. It is not known whether the normal Huntington allele size influences the relation between the expanded repeat and AO of HD. Data collected from two independent cohorts were used to test the hypothesis that the unexpanded CAG repeat interacts with the expanded CAG repeat to influence AO of HD. In the New England Huntington Disease Center Without Walls (NEHD) cohort of 221 HD affected persons and in the HD-MAPS cohort of 533 HD affected persons, we found evidence supporting an interaction between the expanded and unexpanded CAG repeat sizes which influences AO of HD (P = 0.08 and 0.07, respectively). The association was statistically significant when both cohorts were combined (P=0.012). The estimated heritability of the AO residual was 0.56 after adjustment for normal and expanded repeats and their interaction. An analysis of tertiles of repeats sizes revealed that the effect of the normal allele is seen among persons with large HD repeat sizes (47-83). These findings suggest that an increase in the size of the normal repeat may mitigate the expression of the disease among HD affected persons with large expanded CAG repeats. (C) 2003 Wiley-Liss, Inc.
Resumo:
Gremlin, a cell growth and differentiation factor, promotes the development of diabetic nephropathy in animal models, but whether GREM1 gene variants associate with diabetic nephropathy is unknown. We comprehensively screened the 5' upstream region (including the predicted promoter), all exons, intron-exon boundaries, complete untranslated regions, and the 3' region downstream of the GREM1 gene. We identified 31 unique variants, including 24 with a minor allele frequency exceeding 5%, and 9 haplotype-tagging single nucleotide polymorphisms (htSNPs). We selected one additional variant that we predicted to alter transcription factor binding. We genotyped 709 individuals with type 1 diabetes of whom 267 had nephropathy (cases) and 442 had no evidence of kidney disease (controls). Three individual SNPs significantly associated with nephropathy at the 5% level, and two remained significant after adjustment for multiple testing. Subsequently, we genotyped a replicate population comprising 597 cases and 502 controls: this population supported an association with one of the SNPs (rs1129456; P = 0.0003). Combined analysis, adjusted for recruitment center (n = 8), suggested that the T allele conferred greater odds of nephropathy (OR 1.69; 95% CI 1.36 to 2.11). In summary, the GREM1 variant rs1129456 associates with diabetic nephropathy, perhaps explaining some of the genetic susceptibility to this condition.