992 resultados para ALKALINE-SOLUTIONS
Resumo:
Satellite droplets are unwanted in inkjet printing and various approaches have been suggested for their reduction. Low jetting speeds limit applications of the process. Added surfactants for wetting and conductivity enhancement may help but dynamic surface tension effects may counteract improvements. A higher fluid viscosity delays ligament break-up, but also leads to slower jets, while viscoelasticity reduces satellite formation only in certain cases. We show here that aqueous solutions of PEDOT:PSS (1:2.5 by weight) are strongly shear-thinning. They exhibit low viscosity within the printing nozzle over a wide range of jet speeds, yet rapidly (<100 μs) recover a higher viscosity at the low shear rates applicable once the jet has formed, which give the benefit of delayed satellite formation. The delay over a 0.8 mm stand-off distance can be sufficient to completely suppress satellites, which is significant for many printing applications. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents explicit solutions for a class of decentralized LQG problems in which players communicate their states with delays. A method for decomposing the Bellman equation into a hierarchy of independent subproblems is introduced. Using this decomposition, all of the gains for the optimal controller are computed from the solution of a single algebraic Riccati equation. © 2012 AACC American Automatic Control Council).
Resumo:
The change in acoustic characteristics in personal computers to console gaming and home entertainment systems with the change in the Graphics Processing Unit (GPU), is presented. The tests are carried out using identical configurations of the software and system hardware. The prime components of the hardware used in the project are central processing unit, motherboard, hard disc drive, memory, power supply, optical drive, and additional cooling system. The results from the measurements taken for each GPU tested are analyzed and compared. The test results are obtained using a photo tachometer and reflective tape adhered to one particular fan blade. The test shows that loudness is a psychoacoustic metric developed by Zwicker and Fastal that aims to quantify how loud a sound is perceived as compared to a standard sound. The acoustic experiment reveals that the inherent noise generation mechanism increases with the increase of the complexity of the cooling solution.
Resumo:
A new model is presented which describes the growth of the duplex layers of Fe3O4 on mild steel in high temperature, deoxygenated, neutral or alkaline aqueous solutions. It is shown that the layers grow by the ingress of water along oxide micropores to the metal-oxide interface and by the rate-limiting outward diffusion of Fe ions along oxide grain boundaries. The new model accounts for the observed temperature-dependence and pH-dependence of the corrosion, the morphology of inner and outer layer crystallites, the segregation of alloying elements, and the location of hydrogen evolution. The model can also be generalized to other steels and alloys. © 1989.
Resumo:
This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.
Resumo:
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.
Resumo:
Managing product information for product items during their whole lifetime is challenging, especially during their usage and end-of-life phases. A major challenge is how to keep a link between the product item and its associated information that may be stored in backend systems of different organizations. This chapter analyses and compares three approaches for addressing this task-that is, the electronic product code (EPC) Network, DIALOG, and World Wide Article Information (WWAI). The EPC network has three key strengths with respect to Product lifecycle management (PLM): First, it is an internationally accepted standard that is supported by a world-wide standards body (GSI). Second, the lookup mechanism helps to insulate the data on the tag from change. Third, because it is becoming widespread and that this tag can also be used for PLM. WWAI is more technically sophisticated than the other approaches. The DIALOG approach might be the most general purpose one of the three because it places few restrictions on the format of the data on the tag. © 2006 Copyright © 2006 Elsevier Ltd. All rights reserved.