965 resultados para AIR POLLUTION IN MEGACITIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO43-, NO3-, SO42-, HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mu m in diameter) Sao Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO42-, NO3-, Cl- and PO43- while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O42-, K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO42- and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the impact of intra-urban atmospheric conditions on circulatory and respiratory diseases in elder adults. METHODS: Cross-sectional study based on data from 33,212 hospital admissions in adults over 60 years in the city of Sao Paulo, southeastern Brazil, from 2003 to 2007. The association between atmospheric variables from Congonhas airport and bioclimatic index, Physiological Equivalent Temperature, was analyzed according to the district's socioenvironmental profile. Descriptive statistical analysis and regression models were used. RESULTS: There was an increase in hospital admissions due to circulatory diseases as average and lowest temperatures decreased. The likelihood of being admitted to the hospital increased by 12% with 1 degrees C decrease in the bioclimatic index and with 1 degrees C increase in the highest temperatures in the group with lower socioenvironmental conditions. The risk of admission due to respiratory diseases increased with inadequate air quality in districts with higher socioenvironmental conditions. CONCLUSIONS: The associations between morbidity and climate variables and the comfort index varied in different groups and diseases. Lower and higher temperatures increased the risk of hospital admission in the elderly. Districts with lower socioenvironmental conditions showed greater adverse health impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Metropolitan Area of Sao Paulo (MASP), located in southeastern Brazil, surface ozone concentrations are often well above the national air quality standards. In this experimental study, we attempted to characterize the vertical profile of atmospheric ozone and transport of the ozone plume in the boundary layer, using data from the first ozone soundings ever taken in the MASP. In 2006, we launched fifteen ozonesondes: eight from 15 to 18 May (dry season); and seven from 30 October to 1 November (wet season). Vertical ozone mixing ratios in the troposphere were approximately 40 ppb, reaching maximum values of approximately 60 ppb during the dry-season campaign and approximately 100 ppb during the wet-season campaign. In the first and second campaigns, the mean tropospheric ozone column abundance was 28.2 and 41.3 DU, respectively, which can be attributed to the considerable variation in the annual temperature cycle over the region. To determine the effect that biomass burning has on ozone concentrations over the MASP, we analyzed wind trajectories and satellite-derived fire counts. We cannot state unequivocally that biomass burning contributed to higher ozone concentrations above the boundary layer during the experimental campaigns. In the boundary layer, ozone concentrations increase with altitude, peaking at the base of the inversion layer, suggesting that local emissions of volatile organic compounds and nitrogen oxides play a significant role in the lower troposphere over MASP, influencing ozone formation not only at the surface but also vertically in the atmosphere and in distant regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, Canoparmelia texana lichenized fungi species was used as a passive biomonitor of the atmospheric pollution from the industrial city of So Mateus do Sul, PR, Brazil. Lichen samples collected from tree barks were cleaned, freeze-dried and analyzed by neutron activation analysis. Comparisons were made between the element concentrations obtained in lichens from this city and that from a clean area of Atlantic Forest in Intervales Park, SP. The high concentrations of elements As, Ca, Co, Cr, Fe, Hf, Sb, and Th found in lichens could be attributed to the emissions from a ceramic and an oil shale plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM2.5) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM2.5 samples, employing gravimetry to determine PM2.5 mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 mu g/m(3), respectively. In Sao Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM2.5 mass. We used receptor models to identify distinct source-related PM2.5 fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM2.5 mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-a-vis health care costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the impact of intra-urban atmospheric conditions on circulatory and respiratory diseases in elder adults. METHODS: Cross-sectional study based on data from 33,212 hospital admissions in adults over 60 years in the city of São Paulo, southeastern Brazil, from 2003 to 2007. The association between atmospheric variables from Congonhas airport and bioclimatic index, Physiological Equivalent Temperature, was analyzed according to the district's socioenvironmental profile. Descriptive statistical analysis and regression models were used. RESULTS: There was an increase in hospital admissions due to circulatory diseases as average and lowest temperatures decreased. The likelihood of being admitted to the hospital increased by 12% with 1ºC decrease in the bioclimatic index and with 1ºC increase in the highest temperatures in the group with lower socioenvironmental conditions. The risk of admission due to respiratory diseases increased with inadequate air quality in districts with higher socioenvironmental conditions. CONCLUSIONS: The associations between morbidity and climate variables and the comfort index varied in different groups and diseases. Lower and higher temperatures increased the risk of hospital admission in the elderly. Districts with lower socioenvironmental conditions showed greater adverse health impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work were apply and provide a preliminary evaluation of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) performance, for Londrina region. We performed comparison with measurements obtained in meteorological stations. The model was configured to run with three domains with 27,9 and 3 km of grid resolution, using the ndown program and also was realized a simulation with the model configured to run with a single domain using a land use file based in a classified image for region of MODIS sensor. The emission files to supply the chemistry run were generated based in the work of Martins et al., 2012. RADM2 chemical mechanism and MADE/SORGAM modal aerosol models were used in the simulations. The results demonstrated that model was able to represent coherently the formation and dispersion of the pollution in Metropolitan Region of Londrina and also the importance of using the appropriate land use file for the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the work underlying this thesis solid-phase microextraction (SPME) was evaluated as a passive sampling technique for organophosphate triesters in indoor air. These compounds are used on a large scale as flame-retarding and plastizicing additives in a variety of materials and products, and have proven to be common pollutants in indoor air. The main objective of this work was to develop an accurate method for measuring the volatile fraction. Such a method can be used in combination with active sampling to obtain information regarding the vapour/particulate distribution in different indoor environments. SPME was investigated under both equilibrium and non-equilibrium conditions and parameters associated with these different conditions were estimated. In Paper I, time-weighted average (TWA) SPME under dynamic conditions was investigated in order to obtain a fast air sampling method for organophosphate triesters. Among the investigated SPME coatings, the absorptive PDMS polymer had the highest affinity for the organophosphate triesters and was consequently used in all further work. Since the sampling rate is dependent on the agitation conditions, the linear airflow rates had to be carefully considered. Sampling periods as short as 1 hour were shown to be sufficient for measurements in the ng-μg m-3 range when using a PDMS 100-μm fibre and a linear flow rate above 7 cm s-1 over the fibre. SPME under equilibrium conditions is rather time-consuming, even under dynamic conditions, for slowly partitioning compounds such as organophosphate triesters. Nevertheless, this method has some significant advantages. For instance, the limit of detection is much lower compared to 1 h TWA sampling. Furthermore, the sampling time can be ignored as long as equilibrium has been attained. In Paper II, SPME under equilibrium conditions was investigated and evaluated for organophosphate triester vapours. Since temperature and humidity are closely associated with the distribution constant a simple study of the effect of these parameters was performed. The obtained distribution constants were used to determine the air levels in a common indoor environment. SPME and parallel active sampling on filters yielded similar results, indicating that the detected compounds were almost entirely associated with the vapour phase To apply dynamic SPME method in the field a sampler device, which enables controlled linear airflow rates to be applied, was constructed and evaluated (Paper III). This device was developed for application of SPME and active sampling in parallel. A GC/PICI-MS/MS method was developed and used in combination with active sampling of organophosphate triesters in indoor air (Paper IV). The combination of MS/MS and the soft ionization achieved with methanol as reagent gas yielded high selectivity and detection limits comparable to those provided by GC with nitrogen-phosphorus detection (NPD). The method limit of detection, when sampling 1.5 m3 of air, was in the range 0.1-1.4 ng m-3. In Paper V, the developed MS method was used in combination with SPME for indoor air measurements. The levels detected in the investigated indoor environments range from a few ng to μg m-3. Tris(2-chloropropyl) phosphate was detected at a concentration as high as 7 μg m-3 in a newly rebuilt lecture room.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population growth in urban areas is a world-wide phenomenon. According to a recent United Nations report, over half of the world now lives in cities. Numerous health and environmental issues arise from this unprecedented urbanization. Recent studies have demonstrated the effectiveness of urban green spaces and the role they play in improving both the aesthetics and the quality of life of its residents. In particular, urban green spaces provide ecosystem services such as: urban air quality improvement by removing pollutants that can cause serious health problems, carbon storage, carbon sequestration and climate regulation through shading and evapotranspiration. Furthermore, epidemiological studies with controlled age, sex, marital and socio-economic status, have provided evidence of a positive relationship between green space and the life expectancy of senior citizens. However, there is little information on the role of public green spaces in mid-sized cities in northern Italy. To address this need, a study was conducted to assess the ecosystem services of urban green spaces in the city of Bolzano, South Tyrol, Italy. In particular, we quantified the cooling effect of urban trees and the hourly amount of pollution removed by the urban forest. The information was gathered using field data collected through local hourly air pollution readings, tree inventory and simulation models. During the study we quantified pollution removal for ozone, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns). We estimated the above ground carbon stored and annually sequestered by the urban forest. Results have been compared to transportation CO2 emissions to determine the CO2 offset potential of urban streetscapes. Furthermore, we assessed commonly used methods for estimating carbon stored and sequestered by urban trees in the city of Bolzano. We also quantified ecosystem disservices such as hourly urban forest volatile organic compound emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter is one of the main atmospheric pollutants, with a great chemical-environmental relevance. Improving knowledge of the sources of particulate matter and of their apportionment is needed to handle and fulfill the legislation regarding this pollutant, to support further development of air policy as well as air pollution management. Various instruments have been used to understand the sources of particulate matter and atmospheric radiotracers at the site of Mt. Cimone (44.18° N, 10.7° E, 2165 m asl), hosting a global WMO-GAW station. Thanks to its characteristics, this location is suitable investigate the regional and long-range transport of polluted air masses on the background Southern-Europe free-troposphere. In particular, PM10 data sampled at the station in the period 1998-2011 were analyzed in the framework of the main meteorological and territorial features. A receptor model based on back trajectories was applied to study the source regions of particulate matter. Simultaneous measurements of atmospheric radionuclides Pb-210 and Be-7 acquired together with PM10 have also been analysed to acquire a better understanding of vertical and horizontal transports able to affect atmospheric composition. Seasonal variations of atmospheric radiotracers have been studied both analysing the long-term time series acquired at the measurement site as well as by means of a state-of-the-art global 3-D chemistry and transport model. Advection patterns characterizing the circulation at the site have been identified by means of clusters of back-trajectories. Finally, the results of a source apportionment study of particulate matter carried on in a midsize town of the Po Valley (actually recognised as one of the most polluted European regions) are reported. An approach exploiting different techniques, and in particular different kinds of models, successfully achieved a characterization of the processes/sources of particulate matter at the two sites, and of atmospheric radiotracers at the site of Mt. Cimone.