961 resultados para AGing, Cataract, Introcular Lens, Light Scattering, mfERG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To investigate the possible effect of aspherical or yellow tinted intraocular lens (IOL) on contrast sensitivity and blue-on-yellow perimetry. METHODS: This prospective randomized bilateral double-masked clinical study included 52 patients with visually significant bilateral cataracts divided in two groups; 25 patients (50 eyes) received aspherical intraocular lens in one eye and spherical intraocular lens in the fellow eye; and 27 patients (54 eyes) received ultraviolet and blue light filter (yellow tinted) IOL implantation in one eye and acrylic ultraviolet filter IOL in the fellow eye. The primary outcome measures were contrast sensitivity and blue-on-yellow perimetry values (mean deviation [MD] and pattern standard deviation [PSD]) investigated two years after surgery. The results were compared intra-individually. RESULTS: There was a statistically significant between-group (aspherical and spherical intraocular lens) difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. There were no between-group significant differences (yellow tinted and clear intraocular lens) under photopic or mesopic conditions. There was no statistically significant difference between all intraocular lens in MD or PSD. CONCLUSION: Contrast sensitivity was better under mesopic conditions with aspherical intraocular lens. Blue-on-yellow perimetry did not appear to be affected by aspherical or yellow tinted intraocular lens. Further studies with a larger sample should be carried out to confirm or not that hypotheses.
Resumo:
Intense phytoplankton blooms were observed along the Patagonian shelf-break with satellite ocean color data, but few in situ optical observations were made in that region. We examine the variability of phytoplankton absorption and particulate scattering coefficients during such blooms on the basis of field data. The chlorophyll-a concentration, [Chla], ranged from 0.1 to 22.3 mg m−3 in surface waters. The size fractionation of [Chla] showed that 80% of samples were dominated by nanophytoplankton (N-group) and 20% by microphytoplankton (M-group). Chlorophyll-specific phytoplankton absorption coefficients at 440 and 676 nm, a*ph(440) and a*ph(676), and particulate scattering coefficient at 660 nm, b*p(660), ranged from 0.018 to 0.173, 0.009 to 0.046, and 0.031 to 2.37 m2 (mg Chla)−1, respectively. Both a*ph(440) and a*ph(676) were statistically higher for the N-group than M-group and also considerably higher than expected from global trends as a function of [Chla]. This result suggests that size of phytoplankton cells in Patagonian waters tends to be smaller than in other regions at similar [Chla]. The phytoplankton cell size parameter, Sf, derived from phytoplankton absorption spectra, proved to be useful for interpreting the variability in the data around the general inverse dependence of a*ph(440), a*ph(676), and b*p(660) on [Chla]. Sf also showed a pattern along the increasing trend of a*ph(440) and a*ph(676) as a function of the ratios of some accessory pigments to [Chla]. Our results suggest that the variability in phytoplankton absorption and scattering coefficients in Patagonian waters is caused primarily by changes in the dominant phytoplankton cell size accompanied by covariation in the concentrations of accessory pigments.
Resumo:
PurposeTo investigate the causal relationship between acute postoperative endophthalmitis (POE) after cataract surgery and the biomaterial properties of the intraocular lens (IOLs) implanted.MethodsThis retrospective cohort study included all patients who had undergone cataract surgery with IOL implantation at the Lyon Croix-Rousse University Hospital between 1st January 1994 and 31st December 2004. Details respecting the type of IOL implanted (material and manufacturer) were meticulously recorded. The number of patients presenting with POE within 6 weeks of cataract surgery was documented together with their medical characteristics. These data were then compared, and Fisher's exact test was used to establish the significance of any apparent associations.ResultsEight of the 5837 eyes manifested acute POE (0.14%). Seven of these were composed of polymethylmethacrylate (PMMA) and one of heparinized PMMA. Patients with PMMA IOLs carried a higher risk of developing POE than did those implanted with either heparinized PMMA (P=0.001), hydrophilic acrylic, or hydrophobic acrylic IOLs (P=0.002).ConclusionsThe incidence of acute POE after cataract surgery in our hospital is similar to that currently reported for other institutions in developed countries. Our results add further evidence that IOL material and type are factors contributing to the risk to develop an acute POE after cataract surgery, and that PMMA IOLs may be associated with an increased risk of POE.Eye advance online publication, 15 September 2006; doi:10.1038/sj.eye.6702544.
Resumo:
Objective: To evaluate the visual and refractive outcomes after phacoemulsification surgery in eyes with isolated lens coloboma. Design: Prospective, consecutive case series. Participants: Eighteen eyes with isolated lens coloboma of 13 patients were included in the study. Mean patient age was 13.9 ± 6.5 years. Methods: Patients underwent phacoemulsification surgery, with combined implantation of capsular tension ring (CTR) and intraocular lens. In colobomas of less than 120°, a CTR was used, whereas in colobomas of more than 120°, a Cionni-modified single eyelet CTR was used to achieve better capsular centration. The main outcome measures were uncorrected distance visual acuity, corrected distance visual acuity, refraction, and keratometry. Results: Mean logMAR uncorrected distance visual acuity and corrected distance visual acuity improved significantly from 1.53 ± 0.35 and 1.02 ± 0.47 before surgery to 0.67 ± 0.51 and 0.52 ± 0.49 at the last visit of the follow-up (p < 0.001). Mean refractive cylinder and spherical equivalent decreased significantly from –6.73 ± 1.73 and –6.72 ± 4.07 D preoperatively to –1.40 ± 1.39 and –0.83 ± 1.31 D at the end of the follow-up (p = 0.001 and p = 0.01, respectively). Mean keratometric astigmatism at preoperative and postoperative visits were 1.58 ± 0.97 and 1.65 ± 0.94 D, respectively (p = 0.70). Conclusions: Phacoemulsification with CTR and intraocular lens implantation is an effective and safe option for providing a refractive correction and a significant visual improvement in eyes with isolated lens coloboma.
Resumo:
PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.
Resumo:
To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p=0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter. © 2013 Elsevier Ltd.
Resumo:
The crystalline lens allows the eye to focus on near and far objects. During the aging process, it loses its ability to focus and often becomes cloudy during cataract formation. At this point, traditional medical therapy replaces the lens with an artificial replacement lens. Although replacement lenses for the crystalline lens have been implanted since 1949 for cataract surgery, none of the FDA-approved lenses mimic the anatomy of the natural lens. Hence, they are not able to focus in a manner similar to the youthful lens. Instead, they function in a manner similar to the aged lens and only provide vision at a single distance or at a very limited range of focal distances. Patients with the newest implants are often obliged to use reading glasses when using near vision, or suffer from optical aberrations, halos, or glare. Therefore, there is a need to provide youthful vision after lens surgery in terms of focusing ability, accurate optical power, and sharp focus without distortion or optical aberrations.
This thesis presents an approach to restoring youthful vision after lens replacement. An intraocular lens (IOL) that can provide accurate visual acuity along with focusing ability is proposed. This IOL relies on the natural anatomy and physiology of the eye, and therefore is actuated in a manner identical to the natural lens. In addition, the lens has the capability for adjustment during or after implantation to provide high-acuity vision throughout life.
The natural anatomy and physiology of the eye is described, along with lens replacement surgery. A lens design is proposed to address the unmet need of lens-replacement patients. Specific care in the design is made for small surgical incisions, high visual acuity, adjustable acuity over years, and the ability to focus similar to the natural lens. Methods to test the IOL using human donor tissue are developed based upon prior experiments on the ex vivo natural lens. These tools are used to demonstrate efficacy of the newly developed accommodating intraocular lens.
To further demonstrate implant feasibility, materials and processes for building the lens are evaluated for biocompatibility, endurance, repeatable manufacture, and stability. The lens biomechanics are determined after developing an artificial anatomy testing setup inspired by the natural anatomy of the human focusing mechanism. Finally, based upon a mechanical and optical knowledge of the lens, several improved lens concepts are proposed and demonstrated for efficacy.
Resumo:
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.
Resumo:
We analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder that is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency that is not affected by the magnetism and the incidence angle. This relation, indeed, seems to be independent of the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media. (C) 2010 Optical Society of America