991 resultados para A240-ML
Resumo:
Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.
Resumo:
In this second part of a two part series of papers, we construct a new class of Space-Time Block Codes (STBCs) for point-to-point MIMO channel and Distributed STBCs (DSTBCs) for the amplify-and-forward relay channel that give full-diversity with Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC) decoders. The proposed class of STBCs include most of the known full-diversity low complexity PIC/PIC-SIC decodable STBCs as special cases. We also show that a number of known full-diversity PIC/PIC-SIC decodable STBCs that were constructed for the point-topoint MIMO channel can be used as full-diversity PIC/PIC-SIC decodable DSTBCs in relay networks. For the same decoding complexity, the proposed STBCs and DSTBCs achieve higher rates than the known low decoding complexity codes. Simulation results show that the new codes have a better bit error rate performance than the low ML decoding complexity codes available in the literature.
Resumo:
Mufflers with at least one acoustically absorptive duct are generally called dissipative mufflers. Generally, for want of systems approach, these mufflers are characterized by transmission loss of the lined duct with overriding corrections for the terminations, mean flow, etc. In this article, it is proposed that dissipative duct should be integrated with other muffler elements, source impedance and radiation impedance, by means of transfer matrix approach. Towards this end, the transfer matrix for rectangular duct with mean flow has been derived here, for the least attenuated mode. Mean flow introduces a coupling between transverse wave numbers and axial wave number, the evaluation of which therefore calls for simultaneous solution of two or three transcendental equations. This is done by means of a Newton-Raphson iteration scheme, which is illustrated here for square ducts lined with porous ceramic tiles.
Resumo:
This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.
Resumo:
Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.
Resumo:
The use of electroacoustic analogies suggests that a source of acoustical energy (such as an engine, compressor, blower, turbine, loudspeaker, etc.) can be characterized by an acoustic source pressure ps and internal source impedance Zs, analogous to the open-circuit voltage and internal impedance of an electrical source. The present paper shows analytically that the source characteristics evaluated by means of the indirect methods are independent of the loads selected; that is, the evaluated values of ps and Zs are unique, and that the results of the different methods (including the direct method) are identical. In addition, general relations have been derived here for the transfer of source characteristics from one station to another station across one or more acoustical elements, and also for combining several sources into a single equivalent source. Finally, all the conclusions are extended to the case of a uniformly moving medium, incorporating the convective as well as dissipative effects of the mean flow.
Resumo:
This letter deals with a three‐dimensional analysis of circular sectors and annular segments resulting from the partitioning of a round (cylindrical) duct for use in an active noise control system. The relevant frequency equations are derived for stationary medium and solved numerically to arrive at the cut‐on frequencies of the first few modes. The resultant table indicates among other things that azimuthal partitioning does not raise the cutoff frequency (the smallest cut‐on frequency) beyond a particular value, and that radial partitioning is counterproductive in that respect.
Resumo:
This letter proposes the combination of a passive muffler and an active noise control system for the control of very high‐level noise in ducts used with large industrial fans and similar equipment. The analysis of such a hybrid system is presented making use of electroacoustic analogies and the transfer matrix method. It turns out that a passive muffler upstream of the input microphone can indeed lower the acoustic pressure and, hence, the power requirement of the auxiliary source. The parameter that needs to be optimized (or maximized) for this purpose is a certain velocity ratio that can readily be evaluated in a closed form, making it more or less straightforward to synthesize the configuration of an effective passive muffler to go with the active noise control system.
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
The concept of symmetry for passive, one-dimensional dynamical systems is well understood in terms of the impedance matrix, or alternatively, the mobility matrix. In the past two decades, however, it has been established that the transfer matrix method is ideally suited for the analysis and synthesis of such systems. In this paper an investigatiob is described of what symmetry means in terms of the transfer matrix parameters of an passive element or a set of elements. One-dimensional flexural systems with 4 × 4 transfer matrices as well as acoustical and mechanical systems characterized by 2 × 2 transfer matrices are considered. It is shown that the transfer matrix of a symmetrical system, defined with respect to symmetrically oriented state variables, is involutory, and that a physically symmetrical system may not necessarily be functionally or dynamically symmetrical.
Resumo:
A general differential equation for the propagation of sound in a variable area duct or nozzle carrying incompressible mean flow (of low Mach number) is derived and solved for hyperbolic and parabolic shapes. Expressions for the state variables of acoustic pressure and acoustic mass velocity of the shapes are derived. Self‐consistent expressions for the four‐pole parameters are developed. The conical, exponential, catenoidal, sine, and cosine ducts are shown to be special cases of hyperbolic ducts. Finally, it is shown that if the mean flow in computing the transmission loss of the mufflers involving hyperbolic and parabolic shapes was not neglected, little practical benefit would be derived.
Resumo:
The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.
Resumo:
Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.
Resumo:
For a family/sequence of Space-Time Block Codes (STBCs) C1, C2,⋯, with increasing number of transmit antennas Ni, with rates Ri complex symbols per channel use (cspcu), i = 1,2,⋯, the asymptotic normalized rate is defined as limi→∞ Ri/Ni. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least maximum-likelihood (ML) decoding complexity among all known codes for any number of transmit antennas N>;1 and rates R>;1 cspcu. For a large set of (R,N) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=N) are asymptotically-optimal and fast-decodable, and for N>;5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper: (i) Construction of a new class of asymptotically-good, full-diversity multigroup ML decodable codes, that not only includes STBCs for a larger set of antennas, but also either matches in rate or contains as a proper subset all other high-rate or asymptotically-good, delay-optimal, multigroup ML decodable codes available in the literature. (ii) Construction of a new class of fast-group-decodable codes (codes that combine the low ML decoding complexity properties of multigroup ML decodable codes and fast-decodable codes) for all even number of transmit antennas and rates 1 <; R ≤ 5/4.- - (iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.