987 resultados para 765
Resumo:
Indian Ocean crust formed at Sites 765 and 766 is geochemically comparable to that presently forming in the Red Sea. In both cases, we interpret the crust as reflecting high degrees of mantle melting that are associated with an enhanced thermal gradient below recently rifted continental lithosphere. Asthenospheric melts formed in this environment are rich in CaO and FeO, poor in Na2O and Al2O3, and characterized by depleted rare earth element (REE) profiles ([La/Sm]n approximately 0.5-0.6). Both the Red Sea basalts and the basalts at Sites 765 and 766 are distinct from those erupted at the present Mid-Indian Ocean Ridge. The isotope characteristics of the Site 765 basalts define a geochemical signature similar to that of the present-day Mid-Indian Ocean Ridge basalts (MIORB). The Indian Ocean mantle domain is distinct from that of the Atlantic and Pacific oceans, and this distinction has persisted since Jurassic time, when the Site 765 oceanic crust was formed.
Resumo:
A summary of calcareous nannofossil biostratigraphy performed for Late Jurassic (Kimmeridgian) to Early Cretaceous (Hauterivian) cores of Site 765 (Cores 123-765C-58R to -55R) and Site 261 (Cores 27-261-33 to -27), Argo Abyssal Plain, off northwestern Australia is presented. Precise age determinations were limited by variable preservation and the exclusion of a number of marker species due to provincialism. However, the presence of species, such as, Stephanolithion bigotii bigotii, Watznaueria manivitae, Tubodiscus verenae, and Cruciellipsis cuvillieri results in a reasonably good degree of biostratigraphic control. Biogeographic interpretation of the nannofossil data suggests that the Argo Basin occupied a position transitional between the Tethyan and Austral nannofloral realms. A cooler water regime is suggested by the absence of thermophyllic Tethyan forms, such as Nannoconus, and the presence of taxa that display bipolar distribution, such as Crucibiscutum salebrosum. Two new species, Zeugrhabdotus cooperi and Cyclagelosphaera argoensis, and one new combination, Haqius ellipticus are described.
Resumo:
Lower Cretaceous sediments were sampled for magnetostratigraphy at three sites. ODP Site 765 and DSDP Site 261, in the Argo Abyssal Plain, consist primarily of brownish-red to gray claystone having hematite and magnetite carriers of characteristic magnetization. ODP Site 766, in the Gascoyne Abyssal Plain, consists mainly of dark greenish-gray volcaniclastic turbidites with magnetite as the carrier of characteristic magnetization. Progressive thermal demagnetization (Sites 765 and 261) or alternating field demagnetization (Site 766) yielded well-defined polarity zones and a set of reliable paleolatitudes. Magnetic polarity chrons were assigned to polarity zones using biostratigraphic correlations. Late Aptian chron M"-1"r, a brief reversed-polarity chron younger than MOr, is a narrow, 40-cm feature delimited in Hole 765C. Early Aptian reversed-polarity chron MOr is also present in Hole 765C. Polarity chrons Mir through M3r were observed in the Barremian of all three sites. Valanginian and Hauterivian polarity chrons can be tentatively assigned to polarity zones only in Hole 766A. The paleolatitude of this region remained at 35° to 37°S from the Berriasian through the Aptian. During this interval, there was approximately 16° of clockwise rotation, with the oriented sample suites of Site 765 displaying a Berriasian declination of 307° to an Aptian declination of 323°. These results are consistent with the interpolated Early Cretaceous apparent polar wander for Australia, but indicate that this region was approximately 5? farther north than predicted.