995 resultados para 7137-137
Resumo:
A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.
Resumo:
The absorption and emission spectra of two coumarins namely 7, 8 benzo-4-azidomethyl coumarin (C-1) and 6-methoxy-4-azidomethyl coumarin (C-2) have been recorded at room temperature in solvents of different polarities. The ground state dipole moments (mu(g)) of two coumarins were determined experimentally by Guggenheim method. The exited state (mu(e)) dipole moments were estimated from Lippert's, Bakhshievs and Chamma-Viallet's equations by using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The ground and excited state dipole moments were calculated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moments of excited state were higher than those of the ground state, indicating a substantial redistribution of the pi-electron densities in a more polar excited state for two coumarins.
Resumo:
Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2x10(11) cm(2) s(-1). The quenching of alpha, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong alpha-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8x10(12) cm(2) s(-1) in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.
Resumo:
In the tree cricket Oecanthus henryi, females are attracted by male calls and can choose between males. To make a case for female choice based on male calls, it is necessary to examine male call variation in the field and identify repeatable call features that are reliable indicators of male size or symmetry. Female preference for these reliable call features and the underlying assumption behind this choice, female preference for larger males, also need to be examined. We found that females did prefer larger males during mating, as revealed by the longer mating durations and longer spermatophore retention times. We then examined the correlation between acoustic and morphological features and the repeatability of male calls in the field across two temporal scales, within and across nights. We found that carrier frequency was a reliable indicator of male size, with larger males calling at lower frequencies at a given temperature. Simultaneous playback of male calls differing in frequency, spanning the entire range of natural variation at a given temperature, revealed a lack of female preference for low carrier frequencies. The contrasting results between the phonotaxis and mating experiments may be because females are incapable of discriminating small differences in frequency or because the change in call carrier frequency with temperature renders this cue unreliable in tree crickets. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed ``spins on a ring'' (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The ``spins on a ring'' model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4732095]
Resumo:
The impact of gate-to-source/drain overlap length on performance and variability of 65 nm CMOS is presented. The device and circuit variability is investigated as a function of three significant process parameters, namely gate length, gate oxide thickness, and halo dose. The comparison is made with three different values of gate-to-source/drain overlap length namely 5 nm, 0 nm, and -5 nm and at two different leakage currents of 10 nA and 100 nA. The Worst-Case-Analysis approach is used to study the inverter delay fluctuations at the process corners. The drive current of the device for device robustness and stage delay of an inverter for circuit robustness are taken as performance metrics. The design trade-off between performance and variability is demonstrated both at the device level and circuit level. It is shown that larger overlap length leads to better performance, while smaller overlap length results in better variability. Performance trades with variability as overlap length is varied. An optimal value of overlap length of 0 nm is recommended at 65 nm gate length, for a reasonable combination of performance and variability.
Resumo:
Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.
Resumo:
Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (tau) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4742189]
Resumo:
With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736568]
Resumo:
A molecular dynamics simulation study of aqueous solution of LiCl is reported as a function of pressure. Experimental measurements of conductivity of Li+ ion as a function of pressure shows an increase in conductivity with pressure. Our simulations are able to reproduce the observed trend in conductivity. A number of relevant properties have been computed in order to understand the reasons for the increase in conductivity with pressure. These include radial distribution function, void and neck distributions, hydration or coordination numbers, diffusivity, velocity autocorrelation functions, angles between ion-oxygen and dipole of water as well as OH vector, mean residence time for water in the hydration shell, etc. These show that the increase in pressure acts as a structure breaker. The decay of the self part of the intermediate scattering function at small wave number k shows a bi-exponential decay at 1 bar which changes to single exponential decay at higher pressures. The k dependence of the ratio of the self part of the full width at half maximum of the dynamic structure factor to 2Dk(2) exhibits trends which suggest that the void structure of water is playing a role. These support the view that the changes in void and neck distributions in water can account for changes in conductivity or diffusivity of Li+ with pressure. These results can be understood in terms of the levitation effect. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4756909]
Resumo:
The short-lived radionuclide Ca-41 plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of Ca-41/Ca-40 in the solar system was determined to be (1.41 +/- 0.14) x 10(-8), primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of Ca-41/Ca-40 to be (2.6 +/- 0.9) x 10(-9) and (1.4 +/- 0.6) x 10(-9) (2 sigma), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower Al-26/Al-27 ratios in the two CAIs, we propose that the true solar system initial value of Ca-41/Ca-40 should have been similar to 4.2 x 10(-9). Synchronicity could have existed between Al-26 and Ca-41, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial Ca-41 abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, Ca-41 could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of Ca-41.
Resumo:
The detection of sound signals in vertebrates involves a complex network of different mechano-sensory elements in the inner ear. An especially important element in this network is the hair bundle, an antenna-like array of stereocilia containing gated ion channels that operate under the control of one or more adaptation motors. Deflections of the hair bundle by sound vibrations or thermal fluctuations transiently open the ion channels, allowing the flow of ions through them, and producing an electrical signal in the process, eventually causing the sensation of hearing. Recent high frequency (0.1-10 kHz) measurements by Kozlov et al. Proc. Natl. Acad. Sci. U. S. A. 109, 2896 (2012)] of the power spectrum and the mean square displacement of the thermal fluctuations of the hair bundle suggest that in this regime the dynamics of the hair bundle are subdiffusive. This finding has been explained in terms of the simple Brownian motion of a filament connecting neighboring stereocilia (the tip link), which is modeled as a viscoelastic spring. In the present paper, the diffusive anomalies of the hair bundle are ascribed to tip link fluctuations that evolve by fractional Brownian motion, which originates in fractional Gaussian noise and is characterized by a power law memory. The predictions of this model for the power spectrum of the hair bundle and its mean square displacement are consistent with the experimental data and the known properties of the tip link. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4768902]
Resumo:
We report a simple, template free and low-temperature hydrothermal reaction pathway using Cu(II) - thiourea complex (prepared in situ from copper (II) chloride and thiourea as precursors) and citric acid as complexing agent to synthesize two-dimensional hierarchical nano-structures of covellite (CuS). The product was characterized with the help of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The concentration of citric acid in the hydrothermal precursor solution was seen to have a profound effect on the nanostructure of the product generated. Based on the outcoming product nano-architecture at different concentration of the ionic surfactant in the hydrothermal precursor solution a possible mechanism suited for reaction and further nucleation is also discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.