995 resultados para 70-509


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As soon as they are emplaced on the sea floor, oceanic basalts go through a low-temperature alteration process which produces black halos concentrical with exposed surfaces and cracks, whereas the grey internal parts of the basaltic pieces apparently remain unaltered. This paper reports for the first time the occurrence of authigenic siderite and ankerite in oceanic basalts and more particularly in the grey internal parts of the latter. Small (8-50 µm) crystals of zoned siderite and ankerite have been observed in ten vesicles of two samples recovered from DSDP Holes 506G and 507B drilled south of the Galápagos Spreading Center (GSC). These Fe-carbonates show a large range of chemical composition (FeCO3 = 47-88%; CaCO3 = 5-40%; MgCO3 = 1-20%; MnCO3 = 0-11%). Most of them are Ca-richer than siderite reported in the literature. The chemical composition of the carbonate clearly reflects the fluctuation of the fluid chemical composition during crystallization. Mn and at least part of the Fe are thought to be hydrothermal in origin, whereas Mg and probably Ca were provided by seawater. It is proposed that siderite and ankerite formed at relatively low temperature (<85°C) and is metastable. The alteration of the GSC basalts seems to have proceeded in two stages: during the first, reducing stage, pyrite precipitated from hydrothermal fluids. A little further in the rock, siderite precipitated from the fluid which had already been modified by the formation of pyrite, and thus in a microenvironment where particular conditions prevailed (high P_CO2, increasing p_S**2- or increasing pH or increasing or decreasing pe). During the second, oxidizing, stage of alteration, a seawater-dominated fluid allowed crystallization of mixtures of Fe-rich smectites and micas, and Fe-hydroxides forming the black halos in the external portion of the basalt pieces and locally oxidizing pyrite and siderite in their innermost part. It is shown in this paper that, even at its earliest stage, and at low temperature, alteration of the upper oceanic crust (lavas) involves fluids enriched in Fe and Mn, interpreted to be of hydrothermal origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear-wave and compressional-wave velocities of 26 basalt samples collected at Site 504 during Deep Sea Drilling Project Legs 69 and 70 were measured at elevated confining pressures. The young basalts have higher velocities than average DSDP basalts, because of their lack of alteration. Measurements of sample porosity are combined with laboratory and in situ velocity measurements to yield estimates of total crustal porosity: 13% at the top of Layer 2, and very low porosity below a depth of 2.0 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at subsurface depths of about 2 to 20 meters; Mn-oxide material is limited to the upper 2 meters of the mounds. The nontronite forms intervals of up to a few meters' thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major element composition between nontronites from varying locations within the mounds, with adjacent granules from a given sample having very similar compositions; (2) individual granules show little internal variation in composition. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of Eh and composition during nontronite formation. Mn-oxide crusts have very low Fe contents, a feature characteristic of rapidly deposited Mn-oxide crusts formed under hydrothermal influences. The rare-earth element (REE) abundances of the nontronites are generally extremely low, totalling less than several ppm. Two samples have the negatively Ce anomaly typical of authigenic precipitates formed relatively rapidly from seawater. A Mn-oxide crust sample has low REE contents, typical of Mn-oxide crusts formed under hydrothermal influences, but no negative Ce anomaly. A sample of unusual Mn-Fe-oxide mud has relatively high REE concentrations and a seawater-type pattern; both of these features are also found for metalliferous sediments from the East Pacific Rise. The oxygen and hydrogen isotopic composition of the nontronites define a restricted field within a d18O-dD plot. In manganiferous sediments, d18O and dD appear to decrease with increase in the Mn-oxide content of the sediment. From the d18O values of the nontronites, formation temperatures in the range of about 20-30°C have been estimated. By comparison, temperatures of up to 11.5 °C at a 9-meter depth have been directly measured within the mounds (Corliss et al., 1979), and heat-flow data suggest present basement/sediment interface temperatures of 15-25°C. In a plot of Fe + Mn vs. d18O, the Mn-oxide crust and Mn-Fe-ooze plot near the tie-lines for authigenic Mn nodules and silicate phases, implying that they have formed in isotopic equilibrium with seawater at or close to bottom-water temperatures.