995 resultados para 70-506I
Resumo:
Chemical compositions and 1-atm. phase relations were determined for basalts drilled from Holes 501, 504A, 504B, 505, and 505B on Legs 68, 69, and 70 of the Deep Sea Drilling Project. Chemical, experimental, and petrographic data indicate that these basalts are moderately evolved (Mg' values from 0.60 to 0.70), with olivine plus Plagioclase and often clinopyroxene on the liquidus. Chemical stratigraphy was used to infer that sequential influxes of magma into a differentiating magma chamber or separate flows from different magma chambers or both had occurred. Two major types of basalt were found to be inter layered: Group M, a rarely occurring type with major element chemistry and magmaphile element abundances within the range of the majority of ocean-floor basalts (TiO2 = 1.3%, Na2O 2.5%, Zr = 103 ppm, Nb = 2.5 ppm, and Y = 31 ppm); and Group D, a highly unusual series of basalt compositions that exhibit much lower magmaphile element abundances (TiO2 = 0.75-1.2%, Na2O = 1.7-2.3%, Zr = 34-60 ppm, Nb = 0.5-1.2 ppm, and Y = 16-27 ppm). The liquidus temperatures of the Group D basalts are high (1230- 1260°C) compared with those of other ocean-floor basalts of similar Mg' values. They have high CaO/Na2O ratios (5-8) and are calculated to be in equilibrium with unusually calcic Plagioclase (An78-84). The two basalt groups cannot be related by fractionation processes. However, constant Zr/Nb ratios (>40) for the two groups suggest a single mantle source, with differences in magmaphile element abundances and other element ratios (e.g., Zr/Ti, Zr/Y, Ce/Yb) arising through sequential melting of the same source. Magmas similar to Group D, if mixed with more typical mid-ocean-ridge basalt (MORB) magmas in shallow magma chambers, could provide a source for the highly calcic Plagioclase phenocrysts that appear in more common (i.e., less depleted) phyric ocean-floor basalts.
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.
Resumo:
Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.