1000 resultados para 4-29A
Resumo:
The X-ray analysis of the tetranuclear copper(II) complex formed from pyridoxic acid and 2,2′-dipyridylamine reveals a novel metal binding mode of pyridoxic acid as a multibridged tetradentate dianion. Here the pyridoxic acid moiety uses all possible sites except the pyridine nitrogen for metal coordination.
Resumo:
We report experimental studies which confirm our prediction, namely that the ordered structure of poly(hydroxypro1ine) in solution corresponds to a left-handed helical structure with intrachain hydrogen bonds. The CD studies show that the poly(hydroxypro1ine) molecule has essentially the same conformation in aqueous solution and in the film obtained subsequently by evaporation. X-ray diffraction patterns of the sample in this form (B form) have been recorded at different relative humidities. The patterns recorded at relative humidities over 66% can be interpreted in terms of a helical structure with intrachain hydrogen bonds. These results lead us to conclude that the ordered conformation of poly(hydroxypro1ine) in solution is form B and not form A. This offers a simple explanation for the greater stability of the poly(hydroxypro1ine) helix in solution as compared to the poly(pro1ine) form I1 helix and also for the absence of mutarotation for poly(hydroxypro1ine).
Resumo:
Model building studies on poly(hydroxypro1ine) indicate that in addition to the well-known helical structure of form A, a left-handed helical structure with trans peptide units and with h = 2.86 A and n = 2.67 (i.e., 8 residues in 3 turns) is also possible. In this structure which is shown to be in agreement with X-ray data of the form B in the next paper, the y-hydroxyl group of an (i + 1)th Hyp residue is hydrogen bonded to the carbonyl oxygen of an (i - 1)th residue. The possibility of a structure with cis peptide units is ruled out. It is shown that both forms A and B are equally favorable from considerations of intramolecular energies. Since form B is further stabilized by intrachain hydrogen bonds, we believe that this is likely to be the ordered conformation for poly(hydroxypro1ine) in water.
Resumo:
DDQ oxidation of the spiroalcohol 7a gives exclusively a compound to which the 13a-methyl-13aH-7a, 15-methano-15H-dinaphtho[2,1-b:2',1'-e][1,4]-dioxepin structure 8a has been assigned on the basis of two-dimensional homonuclear (H-1-H-1) and heteronuclear (H-1-C-13; FUCOUP) correlation spectroscopy experiments. Similar oxidation of spiroalcohols 7b-h gives the dioxepin derivatives 8b-h.
Resumo:
Julkaistu Silva Fennica Vol. 5(1) -numeron liitteenä.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.
Resumo:
The temperature dependence of the chlorine-35 n.q.r. in the mercuric chloride-4-picoline N-oxide complex has been studied from 77 K to room temperature, and the results are used to assign the observed frequencies to terminal and bridging chlorines.
Resumo:
The signatures of the coexistence of para and ferromagnetic phases for the Fe3+ charge state of iron have been identified in the low temperature electron spin resonance (ESR) spectra in undoped CdZnTe (Zn similar to 4%) crystals and independently verified by superconducting quantum interference device (SQUID) and AC susceptibility measurements. In the paramagnetic phase the inverse of AC susceptibility follows the Curie-Weiss law. In the ferromagnetic phase the thermal evolution of magnetization follows the well-known Bloch T-3/2 law. This is further supported by the appearance of hysteresis in the SQUID measurements at 2 K below T-c which is expected to lie in between 2 and 2.5 K. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
A conformationally locked fluoropentol undergoes an interesting transformation to (trans,anti,trans,anti,trans)-perhydro-2,3,4a,6,7,8a-naphthalenehexol essentially under conditions of base-induced transesterification. The proposed rationale for the observed metamorphosis involves a nucleophilic displacement of fluoride, and subsequent stereo- and regioselective anti-Furst-Plattner-type ring-opening of the epoxide thus formed.