912 resultados para 280200 Artificial Intelligence and Signal and Image Processing
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.
Resumo:
A new area of machine learning research called deep learning, has moved machine learning closer to one of its original goals: artificial intelligence and general learning algorithm. The key idea is to pretrain models in completely unsupervised way and finally they can be fine-tuned for the task at hand using supervised learning. In this thesis, a general introduction to deep learning models and algorithms are given and these methods are applied to facial keypoints detection. The task is to predict the positions of 15 keypoints on grayscale face images. Each predicted keypoint is specified by an (x,y) real-valued pair in the space of pixel indices. In experiments, we pretrained deep belief networks (DBN) and finally performed a discriminative fine-tuning. We varied the depth and size of an architecture. We tested both deterministic and sampled hidden activations and the effect of additional unlabeled data on pretraining. The experimental results show that our model provides better results than publicly available benchmarks for the dataset.
Resumo:
Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu
Resumo:
La patología de la válvula mitral tiene gran prevalencia dentro de la enfermedad cardiaca. Con nuevas técnicas diagnósticas se perfecciona la caracterización de la válvula mitral y la ecocardiografía tridimensional tras esofágica, ha permitido obtener mejor información acerca de la patología valvular mitral. Objetivo principal : describir estructural y anatómicamente la válvula mitral, sus medidas y relaciones espaciales tridimensionales, en pacientes catalogados con válvula normal comparándolos con pacientes con insuficiencia mitral; en estudios realizados mediante ecocardiografía tras esofágica tridimensional. Materiales y métodos : estudio descriptivo, prospectivo con una serie de casos de válvulas mitrales normales comparadas con insuficientes : Obtención - Imagen tras esofágica 3D en tiempo real - Análisis y procesamiento de la imagen - Reconstrucción Tridimensional. Obtención de las diferentes medidas anatómicas estructurales que servirán para la tipificación de la válvula mitral en 3D. Análisis descriptivo : se utilizarán distribuciones de frecuencia y distribuciones porcentuales y en las variables de tipo cuantitativo medidas de tendencia central y medidas de variabilidad y dispersión. Resultados : se evaluaron durante el periodo de tiempo comprendido entre junio de 2008 y agosto de 2009 un total de 113 pacientes en total, encontrando claras diferencias en la estructura de las insuficiencias por prolapso. No hubo diferenciación en las cardiopatía isquémica vs dilatada. Conclusión : en el prolapso mitral aporta datos en la identificación etiológica ya sea degenerativa fibroelástica o enfermedad de Barlow. No hay diferencia significativa en la estructura que ayude caracterizar cardiopatía isquémica vs cardiopatía dilatada.
Resumo:
Pearon's resource from the Brookshear Chapter
Resumo:
En años recientes,la Inteligencia Artificial ha contribuido a resolver problemas encontrados en el desempeño de las tareas de unidades informáticas, tanto si las computadoras están distribuidas para interactuar entre ellas o en cualquier entorno (Inteligencia Artificial Distribuida). Las Tecnologías de la Información permiten la creación de soluciones novedosas para problemas específicos mediante la aplicación de los hallazgos en diversas áreas de investigación. Nuestro trabajo está dirigido a la creación de modelos de usuario mediante un enfoque multidisciplinario en los cuales se emplean los principios de la psicología, inteligencia artificial distribuida, y el aprendizaje automático para crear modelos de usuario en entornos abiertos; uno de estos es la Inteligencia Ambiental basada en Modelos de Usuario con funciones de aprendizaje incremental y distribuido (conocidos como Smart User Model). Basándonos en estos modelos de usuario, dirigimos esta investigación a la adquisición de características del usuario importantes y que determinan la escala de valores dominantes de este en aquellos temas en los cuales está más interesado, desarrollando una metodología para obtener la Escala de Valores Humanos del usuario con respecto a sus características objetivas, subjetivas y emocionales (particularmente en Sistemas de Recomendación).Una de las áreas que ha sido poco investigada es la inclusión de la escala de valores humanos en los sistemas de información. Un Sistema de Recomendación, Modelo de usuario o Sistemas de Información, solo toman en cuenta las preferencias y emociones del usuario [Velásquez, 1996, 1997; Goldspink, 2000; Conte and Paolucci, 2001; Urban and Schmidt, 2001; Dal Forno and Merlone, 2001, 2002; Berkovsky et al., 2007c]. Por lo tanto, el principal enfoque de nuestra investigación está basado en la creación de una metodología que permita la generación de una escala de valores humanos para el usuario desde el modelo de usuario. Presentamos resultados obtenidos de un estudio de casos utilizando las características objetivas, subjetivas y emocionales en las áreas de servicios bancarios y de restaurantes donde la metodología propuesta en esta investigación fue puesta a prueba.En esta tesis, las principales contribuciones son: El desarrollo de una metodología que, dado un modelo de usuario con atributos objetivos, subjetivos y emocionales, se obtenga la Escala de Valores Humanos del usuario. La metodología propuesta está basada en el uso de aplicaciones ya existentes, donde todas las conexiones entre usuarios, agentes y dominios que se caracterizan por estas particularidades y atributos; por lo tanto, no se requiere de un esfuerzo extra por parte del usuario.
Resumo:
Multi-agent systems have been adopted to build intelligent environment in recent years. It was claimed that energy efficiency and occupants' comfort were the most important factors for evaluating the performance of modem work environment, and multi-agent systems presented a viable solution to handling the complexity of dynamic building environment. While previous research has made significant advance in some aspects, the proposed systems or models were often not applicable in a "shared environment". This paper introduces an ongoing project on multi-agent for building control, which aims to achieve both energy efficiency and occupants' comfort in a shared environment.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS). compensation. for block base motion On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduce hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms. Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
The Twitter network has been labelled the most commonly used microblogging application around today. With about 500 million estimated registered users as of June, 2012, Twitter has become a credible medium of sentiment/opinion expression. It is also a notable medium for information dissemination; including breaking news on diverse issues since it was launched in 2007. Many organisations, individuals and even government bodies follow activities on the network in order to obtain knowledge on how their audience reacts to tweets that affect them. We can use postings on Twitter (known as tweets) to analyse patterns associated with events by detecting the dynamics of the tweets. A common way of labelling a tweet is by including a number of hashtags that describe its contents. Association Rule Mining can find the likelihood of co-occurrence of hashtags. In this paper, we propose the use of temporal Association Rule Mining to detect rule dynamics, and consequently dynamics of tweets. We coined our methodology Transaction-based Rule Change Mining (TRCM). A number of patterns are identifiable in these rule dynamics including, new rules, emerging rules, unexpected rules and ?dead' rules. Also the linkage between the different types of rule dynamics is investigated experimentally in this paper.