976 resultados para 240302 Nuclear and Particle Physics
Resumo:
We seek new couplings of chiral bosons to U(1) gauge fields. Lorentz covariance of the resulting constrained lagrangian is checked with the help of a procedure based in the first-order formalism of Faddeev and Jackiw. We find Harada's constraint and another local one not previously considered. We analyze the constraint structure and part of the spectrum of this second solution and show that it is equivalent to an explicitly covariant coupling of Siegel's chiral boson to gauge fields, which preserves chirality under gauge transformations.
Resumo:
The physical meaning of the recently proposed minimal Wess-Zumino (MWZ) term is discussed. It is shown that the only relativistically acceptable MWZ corresponds to a gauged Floreanini-Jackiw chiral boson. This leads to the conclusion that the very mechanism in action is that of closing families like it happens in the standard model, and not that of the WZ term, in the spirit of Faddeev-Shatashvilli.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
We study the production of composite scalar leptoquarks in eγ colliders, and we show that an e+e- machine operating in its eγ mode is the best way to look for these particles in e+e- collisions, due to the hadronic content of the photon.
Resumo:
We investigate the capability of an ey collider to unravel the hadronic content of the photon. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. We show that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. We illustrate their power for studying the parton distributions of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-y pairs, and heavy quark pairs are produced.
Resumo:
We show that the 2-matrix string model corresponds to a coupled system of 2 + 1-dimensional KP and modified KP ((m)KP2+1) integrable equations subject to a specific symmetry constraint. The latter together with the Miura-Konopelchenko map for (m)KP2+1 are the continuum incarnation of the matrix string equation. The (m)KP2+1 Miura and Backhand transformations are natural consequences of the underlying lattice structure. The constrained (m)KP2+1 system is equivalent to a 1 + 1-dimensional generalized KP-KdV hierarchy related to graded SL(3,1). We provide an explicit representation of this hierarchy, including the associated W(2,1)-algebra of the second Hamiltonian structure, in terms of free currents.
Resumo:
We show that the multi-boson KP hierarchies possess a class of discrete symmetries linking them to discrete Toda systems. These discrete symmetries are generated by the similarity transformation of the corresponding Lax operator. This establishes a canonical nature of the discrete transformations. The spectral equation, which defines both the lattice system and the corresponding Lax operator, plays a key role in determining pertinent symmetry structure. We also introduce the concept of the square root lattice leading to a family of new pseudo-differential operators with covariance under additional Bäcklund transformations.
Resumo:
Morphologies of SrTiO3 particles and agglomerates synthesized by the traditional Pechini route and by the polymer precipitation route were characterized by the nitrogen adsorption/desorption technique and by transmission electron microscopy (TEM). A cluster structure of nanometric particles forming large agglomerates which are broken during pressing followed by cluster rearrangement was observed. The mean particle size is larger for SrTiO3 obtained by the Pechini route and is related to the precursor thermal decomposition and particle growth during calcination. The particle growth is controlled by neck growth among particles and further motion of the particle boundary. © 1995.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
A χ2 analysis is performed to test the resolving power of two-dimensional pion interferometry using for illustration the preliminary E802 data on Si+Au at 14.6 A GeV/c. We find that the resolving power to distinguish two decoupling geometries of different dynamical models is enhanced by studying the variation of the mean χ2 per degrees of freedom with respect to the range of the analysis in the qT, qL plane. The preliminary data seem to rule out dynamical models with significant ω, η resonance formation yields.
Resumo:
We estimate the cross-section for glueball production in peripheral heavy-ion collisions through two-photon and double-Pomeron exchange, at energies that will be available at RHIC and LHC. Glueballs will be produced at large rates, opening the possibility to study decays with very small branching ratios. In particular, we discuss the possibility of observing the subprocess γγ(PP) → G → γγ.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.
Resumo:
We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.
Resumo:
Superstring field theory was recently used to derive a four-dimensional Maxwell action with manifest duality. This action is related to the McClain-Wu-Yu Hamiltonian and can be locally coupled to electric and magnetic sources. In this letter, the manifestly dual Maxwell action is supersymmetrized using N = 1 and N = 2 superspace. The N = 2 version may be useful for studying Seiberg-Witten duality. © 1997 Elsevier Science B.V.
Resumo:
Investigation of invariant cross-sections for production of K*- and K*0, in the fragmentation region of the proton, in p - p and γ - p reactions, gives a direct and unambiguous probe to the symmetry breaking of the nucleon sea. Based on existing data, we clearly found a large asymmetry of the sea. Our result is in excellent agreement with NA51 measurement, signaling lack of any nuclear effect. The measurement can be carried out in a single experimental set up. The ratio K*-/K*0 is equivalent to ū/d̄, with easy access to the x-dependence of the asymmetry. The observed asymmetry from available experimental data is used to improve the valon-recombination model. © 1997 Elsevier Science B.V.