997 resultados para 219
Resumo:
By using ethylenediamine as both an alkali and ligand, quantum size SnO2, nanocrystallites were synthesized with a solvothermal route. The transmission electron micrographs (TEM) were employed to characterize the morphologies of the products. The crystal sizes of the as-synthesized SnO2 were ranged form 2.5 to 3.6 nm. The crystal structure and optical properties of the products were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, optical absorption spectra, photoluminescence and Raman spectra.
Resumo:
A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.
Resumo:
We have investigated the structure, magnetization and magnetoresistance (MR) of the double perovskite compounds Sr2Fe1−xGaxMoO6 (0≤x≤0.25). Rietveld refinement results show that the anti-site defects (ASDs) concentration increases with x, giving rise to highly disordered samples at the B/B positions, for the highest doping levels. The evolution of bond lengths and ions oxidation states could be understood by the distribution of trivalent Ga ions at the B/B positions, which leads to the formation of more disorder structure. The saturation magnetization and Curie temperature decreased with the Ga content increases in the samples, and their origin was found that the cations disorder for the Ga-doped compounds is annihilating double exchange mechanism due to the presence of significant amounts of Fe and Ga cations on the B site. The low-field magnetoresistance of Sr2FeMoO6 (SFMO) can be greatly enhanced by replacing the Fe by the nonmagnetic Ga ion up to a temperature of 300 K,since Ga ions may act as a barrier for electron transport along the chain in the ferromagnetic segregation and weaken the ferromagnetic exchange.
Resumo:
A simultaneous reduction SO42- to S2- by 2,5-pyridinedicarboxylate under hydrothermal conditions produced a new binuclear copper(II) coordination polymer [CuS(4,4'-bipy)](n) (4,4-bipy = 4,4'-bipyridine) (1). Single crystal X-ray analysis revealed that compound I consisted of sulfur-bridged binuclear copper(II) units with Cu-Cu bonding which were combined with 4,4-bipy to generate a three-dimensional network constructed from mutual interpenetration of two-dimensional (6,3) nets. Crystal data for 1:C10H8CuN2S, tetragonal 14(1)/acd, a = 14.0686(5) Angstrom, b = 14.0686(5) Angstrom, c = 38.759(2) Angstrom, Z = 32. Other characterizations by elemental analysis, IR, EPR and TGA analysis were also described in this paper.
Resumo:
A novel long-lasting phosphor CdSiO3:Mn2+ is reported in this paper. The Mn2+-doped CdSiO3 phosphor emits orange light with CIE chromaticity coordinates x = 0.5814 and y = 0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn2+-doped CdSiO3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the,pin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves.
Resumo:
The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.
Resumo:
The VUV-UV spectra of rare earth ions activated calcium borophosphate, CaBPO5:RE (RE = Ce3+, sm(3+), Eu2+, Eu3+, Tb3+ and Dy3+) were determined. The bands at about 155 nm in the VUV excitation spectra are attributed to the host lattice absorptions. The bands at 166 and 190 nm for the sample CaBPO5:Sm have been considered as related to the f-d transition and the charge transfer band (CTB) of Sm3+ ions, and the band at 169 nm for the sample CaBPO5:Dy is assumed to be connected with the f-d transition of the Dy3+ ions in CaBPO5. The partial reduction of Eu3+ CaBPO5:Eu prepared by high temperature solid state reaction in air is confirmed by the VUV-UV spectra.
Resumo:
The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.
Resumo:
The extended gravitational index G(Q) and quantum-chemical descriptors were calculated for the relationship analysis of aminoquinolines. An evolutionary algorithm was described for variable selection and building QSAR models. And the quasi-newton neural networks were employed with better results.
Resumo:
应用线性扫描伏安法(LSV),微分脉冲伏安法(DPV)和循环伏安法(CV)对肌苷在玻碳电极(GCE)上的阳级伏安行为进行了研究,发现在0.1mol/L磷酸氢二纳溶液中,于1.42V(vs.Ag/AgCl)左右产生一个阳极氧化峰,峰电流与肌苷浓度在5×10-4~8×10-2g/L范围内呈线性关系,峰电位随溶液pH值增加而降低。肌苷在与次黄嘌呤、黄嘌呤、尿酸共存时,可得4个分辨良好的阳极氧化峰,它们的峰电位分别为1.42V、1.07V、0.72V和0.26V。用本法不需分离直接测定了药物针剂和加标尿样。实验结果表明肌苷的电极反应为扩散控制不可逆过程。