898 resultados para 1137


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic echinococcosis (CE) is a widespread and severe zoonotic disease caused by infection with the larval stage of the eucestode Echinococcus granulosus sensu lato. The polymorphism exhibited by nuclear and mitochondrial markers conventionally used for the genotyping of different parasite species and strains does not reach the level necessary for the identification of genetic variants linked to restricted geographical areas. EmsB is a tandemly repeated multilocus microsatellite that proved its usefulness for the study of genetic polymorphisms within the species E. multilocularis, the causative agent of alveolar echinococcosis. In the present study, EmsB was used to characterize E. granulosus sensu lato samples collected from different host species (sheep, cattle, dromedaries, dogs, and human patients) originating from six different countries (Algeria, Mauritania, Romania, Serbia, Brazil, and the People's Republic of China). The conventional mitochondrial cox1 and nad1 markers identified genotypes G1, G3, G5, G6, and G7, which are clustered into three groups corresponding to the species E. granulosus sensu stricto, E. ortleppi, and E. canadensis. With the same samples, EmsB provided a higher degree of genetic discrimination and identified variations that correlated with the relatively small-scale geographic origins of the samples. In addition, one of the Brazilian single hydatid cysts presented a hybrid genotypic profile that suggested genetic exchanges between E. granulosus sensu stricto and E. ortleppi. In summary, the EmsB microsatellite exhibits an interesting potential for the elaboration of a detailed map of the distribution of genetic variants and therefore for the determination and tracking of the source of CE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pasteurella species are part of the oral flora of cats and dogs. In humans, they are frequently found in infected animal bite wounds, but invasive infections are rare. This is the first report of prosthetic-valve endocarditis with a Pasteurella dagmatis-like species, which originated from the patient's cat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty Escherichia coli strains isolated primarily from neonatal meningitis, urinary tract infections and feces were screened for the presence of virulence genes with a newly developed microarray on the array tube format. A total of 32 gene probes specific for extraintestinal as well as intestinal E. coli pathotypes were included. Eighty-eight percent of the analyzed strains were positive for the K1-specific probe on the microarray and could be confirmed with a specific antiserum against the K1 capsular polysaccharide. The gene for the hemin receptor ChuA was predominantly found in 95% of strains. Other virulence genes associated with K1 and related strains were P, S, and F1C fimbriae specific for extraintestinal E. coli, the genes for aerobactin, the alpha-hemolysin and the cytotoxic necrotizing factor. In two strains, the O157-specific catalase gene and the gene for the low-molecular-weight heat-stable toxin AstA were detected, respectively. A total of 19 different virulence gene patterns were observed. No correlation was observed between specific virulence gene patterns and a clinical outcome. The data indicate that virulence genes typical of extraintestinal E. coli are predominantly present in K1 strains. Nevertheless, some of them can carry virulence genes known to be characteristic of intestinal E. coli. The distribution and combination of virulence genes show that K1 isolates constitute a heterogeneous group of E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gram-negative, nonmotile bacteria that are catalase, oxidase, and urease positive are regularly isolated from the airways of horses with clinical signs of respiratory disease. On the basis of the findings by a polyphasic approach, we propose that these strains be classified as Nicoletella semolina gen. nov, sp. nov., a new member of the family Pasteurellaceae. N. semolina reduces nitrate to nitrite but is otherwise biochemically inert; this includes the lack of an ability to ferment glucose and other sugars. Growth is fastidious, and the isolates have a distinctive colony morphology, with the colonies being dry and waxy and looking like a semolina particle that can be moved around on an agar plate without losing their shape. DNA-DNA hybridization data and multilocus phylogenetic analysis, including 16S rRNA gene (rDNA), rpoB, and infB sequencing, clearly placed N. semolina as a new genus in the family Pasteurellaceae. In all the phylogenetic trees constructed, N. semolina is on a distinct branch displaying approximately 5% 16S rDNA, approximately 16% rpoB, and approximately 20% infB sequence divergence from its nearest relative within the family Pasteurellaceae. High degrees of conservation of the 16S rDNA (99.8%), rpoB (99.6%), and infB (99.7%) sequences exist within the species, indicating that N. semolina isolates not only are phenotypically homogeneous but also are genetically homogeneous. The type strain of N. semolina is CCUG43639(T) (DSM16380(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 272 staphylococcal isolates from cases of bovine mastitis (159 Staphylococcus aureus) belonging to 12 different species were identified with ID32 STAPH galleries, and 51 of them were confirmed by 16S rRNA gene (rrs) sequencing. The same isolates were examined for their hemolytic activity on sheep blood agar, DNase activity, and coagulase activity and with two rapid identification kits (Slidex Staph Plus kit and RAPIDEC Staph from Bio-Merieux). The results of this study confirm those obtained by other groups with hemolysis, DNase, and coagulase. Only 50% of S. aureus isolates from mastitis cases show coagulase activity after 4 h of incubation, and a 24-h incubation is necessary for the full sensitivity of this test. In contrast to results from other studies with human isolates, the Slidex Staph Plus kit was not sensitive enough for the identification of S. aureus from bovine mastitis samples. The aurease test of the RAPIDEC Staph kit showed 100% sensitivity and 100% specificity. Used in conjunction with hemolysis patterns, the RAPIDEC Staph kit is therefore very well adapted to rapid, efficient, and cost-effective identification of S. aureus in cultures from bovine mastitis samples. Sequencing of rrs genes also proved very efficient in identifying the Staphylococcus species encountered in these samples and confirming phenotypical identification results with unsatisfactory scores. With continuously improving technologies and decreasing costs, genetic identification methods like rrs gene sequencing will soon find a place in routine veterinary diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a case of Pasteurella multocida meningitis in a 1-month-old baby exposed to close contact with two dogs and a cat but without any known history of injury by these animals. 16S rRNA gene sequencing of the isolate from the baby allowed identification at the subspecies level and pointed to the cat as a possible source of infection. Molecular typing of Pasteurella isolates from the animals, from the baby, and from unrelated animals clearly confirmed that the cat harbored the same P. multocida subsp. septica strain on its tonsils as the one isolated from the cerebrospinal fluid of the baby. This case stresses the necessity of informing susceptible hosts at risk of contracting zoonotic agents about some basic hygiene rules when keeping pets. In addition, this study illustrates the usefulness of molecular methods for identification and epidemiological tracing of Pasteurella isolates.