967 resultados para 0905 Civil Engineering
Resumo:
A shortage of petroleum asphalt is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oils, original bio oil (OB), dewatered bio oil (DWB) and polymer-modified bio oil (PMB) were used to modify and partially replace petroleum asphalt in this research. The research investigated the procedure of producing bio oil, the rheological properties of asphalt binders modified and partially replaced by bio oil, and the mechanical performances of asphalt mixtures modified by bio oil. The analysis of variance (ANOVA) is conducted on the test results for the significance analysis. The main finding of the study includes: 1) the virgin bioasphalt is softer than the traditional asphalt binder PG 58-28 but stiffer after RTFO aging because bio oil ages much faster than the traditional asphalt binder during mixing and compaction; 2) the binder test showed that the addition of bio oil is expected to improve the rutting performance while reduce the fatigue and low temperature performance; 3) both the mass loss and the oxidation are important reasons for the bio oil aging during RTFO test; the mixture test showed that 1) most of the bio oil modified asphalt mixture had slightly higher rutting depth than the control asphalt mixture, but the difference is not statistically significant; 2) the dynamic modulus of some of the bio oil modified asphalt mixture were slightly lower than the control asphalt mixture, the E* modulus is also not statistically significant; 3) most of the bio oil modified asphalt mixture had higher fatigue lives than the control asphalt mixture; 4) the inconsistence of binder test results and mixture test results may be attributed to that the aging during the mixing and compaction was not as high as that in the RTFO aging simulation. 5) the implementation of Michigan wood bioasphalt is anticipated to reduce the emission but bring irritation on eyes and skins during the mixing and compaction.
Resumo:
While conducting research to measure and confirm the elevation of Silver Bow County's highest point, Table Mountain, a group of Montana Tech students came across a heretofore unnamed peak designated as Peak 10131 (which denotes it's height).
Resumo:
The purpose of this project in Boulder, Montana was to determine how much usable space was left in the cemetery for future burials and to locate old burial sites where headstones no longer exist.
Resumo:
The Calvert Cliffs, which form much of the western coastline of the Chesapeake Bay in Calvert County, Maryland, are actively eroding and destabilizing, resulting in a critical situation for many homes in close proximity to the slope's crest. Past studies have identified that where waves directly interact with the toe of the slope, wave action controls cliff recession; however, where waves do not regularly interact with the slope toe, the past work identified that freeze-thaw controls recession. This study investigated the validity of this second claim by analyzing the recession rate and freeze-thaw behavior of six study sites along the Calvert Cliffs that are not directly affected by waves. While waves do remove failed material from the toe, in these regions freeze-thaw is believed to be the dominant factor driving recession at the Calvert Cliffs. Past recession rates were calculated using historical aerial photographs and were analyzed together with a number of other variables selected to represent the freeze-thaw behavior of the Calvert Cliffs. The investigation studied sixteen independent variables and found that over 65% of recession at these study sites can be represented by the following five variables: (1) cliff face direction, (2 and 3) the percent of total cliff height composed of soil with freeze-thaw susceptibility F4 and F2, (4) the number of freeze-thaw cycles, and (5) the weighted shear strength. Future mitigation techniques at these sites should focus on addressing these variables and might include vegetation or addressing the presence of water along the face of the slope. Unmitigated, the Calvert Cliffs will continue to recede until a stable slope angle is reached and maintained.
Resumo:
In 1988 a landslide occurred at a construction site in Birmingham, Alabama in which a portion of the construction site required excavating a rock slope with a group of apartments that were located at the top of the slope. During construction, two separate landslides occurred causing one and half of the apartment buildings to collapse downslope. The slope failure was investigated by two firms. One firm investigated the site conditions and the second firm investigated the design of the cut slope. The main concerns in the investigation were (1) the lack of consideration for the existing joint system, (2) using averaged the strength parameters, (3) the possibility of damaging the slope with blasting, and (4) the potential that there were underground mines at the site. The Rocscience program RocPlane was used to model the in situ conditions and the excavation. The model showed that the joint system’s pore water pressure was most likely the main factor in the failure.
Resumo:
Semi-active damping devices have been shown to be effective in mitigating unwanted vibrations in civil structures. These devices impart force indirectly through real-time alterations to structural properties. Simulating the complex behavior of these devices for laboratory-scale experiments is a major challenge. Commercial devices for seismic applications typically operate in the 2-10 kN range; this force is too high for small-scale testing applications where requirements typically range from 0-10 N. Several challenges must be overcome to produce damping forces at this level. In this study, a small-scale magneto-rheological (MR) damper utilizing a fluid absorbent metal foam matrix is developed and tested to accomplish this goal. This matrix allows magneto-rheological (MR) fluid to be extracted upon magnetic excitation in order to produce MR-fluid shear stresses and viscosity effects between an electromagnetic piston, the foam, and the damper housing. Dampers for uniaxial seismic excitation are traditionally positioned in the horizontal orientation allowing MR-fluid to gather in the lower part of the damper housing when partially filled. Thus, the absorbent matrix is placed in the bottom of the housing relieving the need to fill the entire device with MR-fluid, a practice that requires seals that add significant unwanted friction to the desired low-force device. The damper, once constructed, can be used in feedback control applications to reduce seismic vibrations and to test structural control algorithms and wireless command devices. To validate this device, a parametric study was performed utilizing force and acceleration measurements to characterize damper performance and controllability for this actuator. A discussion of the results is presented to demonstrate the attainment of the damper design objectives.
Resumo:
This dissertation established a standard foam index: the absolute foam index test. This test characterized a wide range of coal fly ash by the absolute volume of air-entraining admixture (AEA) necessary to produce a 15-second metastable foam in a coal fly ash-cement slurry in a specified time. The absolute foam index test was used to characterize fly ash samples having loss on ignition (LOI) values that ranged from 0.17 to 23.3 %wt. The absolute foam index characterized the fly ash samples by absolute volume of AEA, defined as the amount of undiluted AEA solution added to obtain a 15-minute endpoint signified by 15-second metastable foam. Results were compared from several foam index test time trials that used different initial test concentrations to reach termination at selected times. Based on the coefficient of variation (CV), a 15-minute endpoint, with limits of 12 to 18 minutes was chosen. Various initial test concentrations were used to accomplish consistent contact times and concentration gradients for the 15-minute test endpoint for the fly ash samples. A set of four standard concentrations for the absolute foam index test were defined by regression analyses and a procedure simplifying the test process. The set of standard concentrations for the absolute foam index test was determined by analyzing experimental results of 80 tests on coal fly ashes with loss on ignition (LOI) values ranging from 0.39 to 23.3 wt.%. A regression analysis informed selection of four concentrations (2, 6, 10, and 15 vol.% AEA) that are expected to accommodate fly ashes with 0.39 to 23.3 wt.% LOI, depending on the AEA type. Higher concentrations should be used for high-LOI fly ash when necessary. A procedure developed using these standard concentrations is expected to require only 1-3 trials to meet specified endpoint criteria for most fly ashes. The AEA solution concentration that achieved the metastable foam in the foam index test was compared to the AEA equilibrium concentration obtained from the direct adsorption isotherm test with the same fly ash. The results showed that the AEA concentration that satisfied the absolute foam index test was much less than the equilibrium concentration. This indicated that the absolute foam index test was not at or near equilibrium. Rather, it was a dynamic test where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms. Equilibrium isotherm equations obtained from direct isotherm tests were used to calculate the equilibrium concentrations and capacities of fly ash from 0.17 to 10.5% LOI. The results showed that the calculated fly ash capacity was much less than capacities obtained from isotherm tests that were conducted with higher initial concentrations. This indicated that the absolute foam index was not equilibrium. Rather, the test is dynamic where the time of the test played an important role in the results. Even though the absolute foam index was not an equilibrium condition, a correlation was made between the absolute foam index and adsorption isotherms for fly ash of 0.17 to 10.5% LOI. Several batches of mortars were mixed for the same fly ash type increasing only the AEA concentration (dosage) in each subsequent batch. Mortar air test results for each batch showed for each increase in AEA concentration, air contents increased until a point where the next increase in AEA concentration resulted in no increase in air content. This was maximum air content that could be achieved by the particular mortar system; the system reached its air capacity at the saturation limit. This concentration of AEA was compared to the critical micelle concentration (CMC) for the AEA and the absolute foam index.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
In this issue...Montana Intercollegiate Athletic Conference, Civil Engineering, Co-ed Club, Mining District Basketball Tournament, Wein's Men's Store, Woolworth's, Butte, Montana
Resumo:
Calving of ice is a relatively new area of research in the still young field of glaciology. In the short time that calving has been studied, it has been mainly treated as an afterthought, with the predominant mode of thinking being that it will happen so to concern oneself with why is not important. Many studies dealt with observations of calving front positions over time vs. ice velocity in an attempt to quantify the calving rate as the difference between the two, while others have attempted to deduce some empirical relationship between calving rate and variables such as water depth or temperature. This study instead addresses the question of why, where, and when ice will first become crevassed, which is an obviously necessary condition for a later calving event to occur. Previous work examining the causes of calving used ideas put forth from a variety of fields, including civil engineering, materials science, and results from basic physics and mechanics. These theories are re-examined here and presented as part of a larger whole. Important results from the field of fracture mechanics are utilized frequently, and these results can be used as a predictor of ice behavior and intrinsic properties of ice, as well as properties like back stresses induced by local pinning points and resistive shears along glacial ice boundaries. A theory of fracture for a material experiencing creep is also presented with applications to ice shelves and crevasse penetration. Finally, a speculative theory regarding large scale iceberg formation is presented. It is meant mainly as an impetus to further discussion on the topic, with the hope that a model relating crevasse geometries to flow parameters can result in crevasse spacings that could produce the tabular icebergs which are so newsworthy. The primary focus of this thesis is to move away from the "after the fact" studies that are so common in calving research, and instead devote energy to determining what creates the conditions that drive the calving of ice in the first place.
Resumo:
Comparing published NAVD 88 Helmert orthometric heights of First-Order bench marks against GPS-determined orthometric heights showed that GEOID03 and GEOID09 perform at their reported accuracy in Connecticut. GPS-determined orthometric heights were determined by subtracting geoid undulations from ellipsoid heights obtained from a network least-squares adjustment of GPS occupations in 2007 and 2008. A total of 73 markers were occupied in these stability classes: 25 class A, 11 class B, 12 class C, 2 class D bench marks, and 23 temporary marks with transferred elevations. Adjusted ellipsoid heights were compared against OPUS as a check. We found that: the GPS-determined orthometric heights of stability class A markers and the transfers are statistically lower than their published values but just barely; stability class B, C and D markers are also statistically lower in a manner consistent with subsidence or settling; GEOID09 does not exhibit a statistically significant residual trend across Connecticut; and GEOID09 out-performed GEOID03. A "correction surface" is not recommended in spite of the geoid models being statistically different than the NAVD 88 heights because the uncertainties involved dominate the discrepancies. Instead, it is recommended that the vertical control network be re-observed.
Resumo:
A study was conducted to empirically determine the degradation of survey-grade GPS horizontal position measurements due to the effects of broadleaf forest canopies. The measurements were taken using GPS/GLONASS-capable receivers measuring C/A and P-codes, and carrier phase. Fourteen survey markers were chosen in central Connecticut to serve as reference markers for the study. These markers had varying degrees of sky obstruction due to overhanging tree canopies. Sky obstruction was measured by photographing the sky with a 35mm reflex camera fitted with a hemispherical lens. The negative was scanned and the image mapped using an equal- area projection to remove the distortion caused by the lens. The resulting digital image was thresholded to produce a black-and-white image in which a count of the black pixels is a measure of sky-area obstruction. The locations of the markers were determined independently before the study. During the study, each marker was occupied for four 20-minute sessions over the period of one week in mid-July, 1999. The location of the study markers produced relatively long baselines, as compared with similar studies. We compared the accuracy of GPS-only vs. GPS&GLONASS as a function of sky obstruction. Based on our results, GLONASS observations did not improve or degrade the accuracy of the position measurements. There is a loss of 2mm of accuracy per percent of sky obstruction for both GPS only and GPS&GLONASS.
Resumo:
The State of Connecticut owns a LIght Detection and Ranging (LIDAR) data set that was collected in 2000 as part of the State’s periodic aerial reconnaissance missions. Although collected eight years ago, these data are just now becoming ready to be made available to the public. These data constitute a massive “point cloud”, being a long list of east-north-up triplets in the State Plane Coordinate System Zone 0600 (SPCS83 0600), orthometric heights (NAVD 88) in US Survey feet. Unfortunately, point clouds have no structure or organization, and consequently they are not as useful as Triangulated Irregular Networks (TINs), digital elevation models (DEMs), contour maps, slope and aspect layers, curvature layers, among others. The goal of this project was to provide the computational infrastructure to create a first cut of these products and to serve them to the public via the World Wide Web. The products are available at http://clear.uconn.edu/data/ct_lidar/index.htm.