992 resultados para amphibole olivine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from Deep Sea Drilling Project Holes 501, 504B and 505B have an unusual near-vein zonation in basalts. Megascopically, zonation occurs as differently colored strips and zones whose typical thickness does not exceed 6 to 7 cm. Microscopically, the color of zones depends on variably colored clay minerals which are the products of low-temperature hydrothermal alteration in basalt. These differently colored zones form the so called "oxidative" type of alteration of basalts. Another "background," or, less precisely termed, "non-oxidative," type of alteration in basalts is characterized by large-scale, homogeneous replacement of olivine, and filling of vesicles and cracks by an olive-brown or olive-green clay mineral. The compositions of clay minerals of the "background" type of alteration, as well as the composition of co-existing titanomagnetites, were determined with an electron microprobe. There are sharp maxima in potassium and iron content, and minima in alumina, silica, and magnesia in clay minerals in the colored zones near veins. Coloring of clay and rock-forming minerals by iron hydroxides and a decrease of the amount of titanomagnetite, which apparently was the source of redeposited iron, occur frequently in colored zones. We assume that the large-scale "background" alteration in the basalts occurred under the effect of pore waters slowly penetrating through bottom sediments. Faulting can facilitate access of fresh sea water to basalts; thus above the general homogeneous background arise zones of "oxidative" alteration along fractures in basalts. The main factors controlling these processes are time (age of basalt), grain size, temperature, thickness of sedimentary cover, and heat flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement rocks were recovered at four sites on Leg 115 along the Reunion hotspot track in the western Indian Ocean. Plate tectonic reconstructions indicate that the drilled structures formed in three different volcanic environments. Sites 706 and 713 from the eastern side of the Saya de Malha Bank and the northern end of the Chagos Bank, respectively, are on a large volcanic platform analogous to Iceland on the Mid-Atlantic Ridge. Lavas at Site 707 on the northwestern side of the Saya de Malha Bank erupted during the early stages of rifting of the Seychelles from India. Basalts from Site 715 were erupted onto an isolated oceanic island that was distant from ocean ridges and continents much as Reunion Island is today. Many of the rocks were examined in thin section and found to be primarily augite-plagioclase basalts with minor olivine and rare opaque oxides. Site 715 is unusual in that it contains a variety of basalts including olivine-rich and aphyric Fe-Ti basalts. At each of the four sites the rocks were grouped into chemical types (units) on the basis of ship- board bulk-rock analyses and at least one thin section from each chemical unit was analyzed by electron microprobe. The plagioclase and augite chemistry reflects the bulk-rock chemistry and, in general, these minerals were in equilibrium with their host magmas at the time the basalts were quenched. Olivine was rarely preserved, but where it is still present it also appears to have crystallized in equilibrium with the host magma. At three of the drill sites plagioclase phenocrysts or megacrysts that crystallized from a primitive magma are also present. The one site (715) that does not contain these primitive plagioclase phenocrysts is also the site that appears to have been influenced the least by ocean- ridge or Deccan-type magmas. Site 715, furthermore, has a mineralogy that is dominated by olivine as compared with the plagioclase-rich lavas of the other sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (<2%). Chondrite-normalized REE patterns show extreme U shapes with (La/Sm)n ratios in the range of 5.03-250.0 and (Sm/Yb)n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction. Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÃ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb < 1 ppm; Zr = 44 ± 7 ppm; Rb < 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four chemically distinct basalts were cored in 44 m of basement penetration at Deep Sea Drilling Project Site 543, in Upper Cretaceous crust just seaward of the deformation front of the Barbados Ridge and north of the Tiburon Rise. All four types are moderately fractionated abyssal tholeiites. The four types have different magnetic inclinations, all of reversed polarity, suggesting eruption at different times which recorded secular variation of the earth's magnetic field. Extensive replacement of Plagioclase by K-feldspar has occurred at the top of the basalts, giving analyses with K2O contents up to 5 %. The earliest stages of alteration were dominantly oxidative, resulting in fractures lined with celadonite and dioctahedral smectite, and pervasive replacement of olivine and most intersertal glass with iron hydroxides and green clay minerals. Latef, non-oxidative alteration resulted in formation of olive-green clays and pyrite veins in a portion of the rocks. Basalts affected by this alteration actually lost K2O (to abundances lower than in adjacent fresh basalt glasses), and gained MgO (to abundances higher than in the glasses). Finally, fractures and interpillow voids were lined with calcite, sealing in much fresh glass. Oxygen-isotope measurements on the calcite indicate that this occurred at 12 to 25C. Either altering fluids were warm or the basalts had become buried with a considerable thickness of sediments, such that temperatures increased until a conductive thermal gradient was established, when the veining occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed comparison of mineralogy, and major and trace geochemistry are presented for the modern Lau Basin spreading centers, the Sites 834-839 lavas, the modern Tonga-Kermadec arc volcanics, the northern Tongan boninites, and the Lau Ridge volcanics. The data clearly confirm the variations from near normal mid-ocean-ridge basalt (N-MORB) chemistries (e.g., Site 834, Central Lau Spreading Center) to strongly arc-like (e.g., Site 839, Valu Fa), the latter closely comparable to the modern arc volcanoes. Sites 835 and 836 and the East Lau Spreading Center represent transitional chemistries. Bulk compositions range from andesitic to basaltic, but lavas from Sites 834 and 836 and the Central Lau Spreading Center extend toward more silica-undersaturated compositions. The Valu Fa and modern Tonga-Kermadec arc lavas, in contrast, are dominated by basaltic andesites. The phenocryst and groundmass mineralogies show the strong arc-like affinities of the Site 839 lavas, which are also characterized by the existence of very magnesian olivines (up to Fo90-92) and Cr-rich spinels in Units 3 and 6, and highly anorthitic plagioclases in Units 2 and 9. The regional patterns of mineralogical and geochemical variations are interpreted in terms of two competing processes affecting the inferred magma sources: (1) mantle depletion processes, caused by previous melt extractions linked to backarc magmatism, and (2) enrichment in large-ion-lithophile elements, caused by a subduction contribution. A general trend of increasing depletion is inferred both eastward across the Lau Basin toward the modern arc, and northward along the Tongan (and Kermadec) Arc. Numerical modeling suggests that multistage magma extraction can explain the low abundances (relative to N-MORB) of elements such as Nb, Ta, and Ti, known to be characteristic of island arc magmas. It is further suggested that a subduction jump following prolonged slab rollback could account for the initiation of the Lau Basin opening, plausibly allowing a later influx of new mantle, as required by the recognition of a two-stage opening of the Lau Basin.