965 resultados para zirconia stabilization
Resumo:
Chemical admixtures increase the theological complexity of cement pastes owing to their chemical and physical interactions with particles, which affects cement hydration and agglomeration kinetics. Using oscillatory rheometry and isothermal calorimetry, this article shows that the cellulose ether HMEC (hydroxymethyl ethylcellulose), widely used as a viscosity modifying agent in self-compacting concretes and dry-set mortars, displayed a steric dispersant barrier effect during the first 2 h of hydration associated to a cement retarding nature, consequently reducing the setting speed. However, despite this stabilization effect, the polymer increased the cohesion strength when comparing cement particles with the same hydration degree. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Electric arc furnace steel dust is a by-product of the steelmaking process and contains high amounts of the iron and zinc and significant amounts of lead, chromium, and cadmium. Metal recycling however, is not always economically feasible, especially due to the complex mineralogical composition of this material. In this study an application of this material is presented. Ceramics were produced with clay and variable amounts of steel dust. The bulk material was fired between 800 and 1100 degrees C. The influence of the composition and the processing temperature on the mechanical strength, linear shrinkage, water absorption, apparent density and bending strength and metal leaching of the ceramic samples was investigated. A blend of clay with up to 20% dust yielded ceramics with limited metal contamination risk and may thus be used for structural ceramics production. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
Resumo:
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject`s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.
Resumo:
Cementitious stabilization of aggregates and soils is an effective technique to increase the stiffness of base and subbase layers. Furthermore, cementitious bases can improve the fatigue behavior of asphalt surface layers and subgrade rutting over the short and long term. However, it can lead to additional distresses such as shrinkage and fatigue in the stabilized layers. Extensive research has tested these materials experimentally and characterized them; however, very little of this research attempts to correlate the mechanical properties of the stabilized layers with their performance. The Mechanistic Empirical Pavement Design Guide (MEPDG) provides a promising theoretical framework for the modeling of pavements containing cementitiously stabilized materials (CSMs). However, significant improvements are needed to bring the modeling of semirigid pavements in MEPDG to the same level as that of flexible and rigid pavements. Furthermore, the MEPDG does not model CSMs in a manner similar to those for hot-mix asphalt or portland cement concrete materials. As a result, performance gains from stabilized layers are difficult to assess using the MEPDG. The current characterization of CSMs was evaluated and issues with CSM modeling and characterization in the MEPDG were discussed. Addressing these issues will help designers quantify the benefits of stabilization for pavement service life.
Resumo:
introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Emulsions containing liquid crystals present interesting properties and advantages such as the skin moisturize increase, active release modulation, and emulsion stabilization. In this work, emulsions containing annatto, coffee and tea tree oils, and nonionic surfactants were developed. The HLB method was used for selection of surfactants. The required HLB value was established (9.0). Liquid crystals were attained when used the surfactant mixture Ceteareth-5 and Steareth-2 and identified as lamellar. The emulsions showed pseudoplastic behavior and tixotropy. The ternary diagram was useful in the selection of the proportion of surfactant and oily phase considering skin compatibility and liquid crystal presence.
Resumo:
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer- dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer- dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Resumo:
A proteinase, named BmooMP alpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the B beta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMP alpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMP alpha-I activity. Since the BmooMP alpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.