961 resultados para water flow in the soil
Resumo:
From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all cases
Resumo:
Phytophthora infestans causes severe symptoms of wilt disease on potato crops (Solanum tuberosum) in the Toluca Valley (Mexico)despite the use of fungicides. P. infestans oospores produced by sexual reproduction can survive in the soil for many years, resisting harsh environments.
Resumo:
Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schrödinger equation, has been analyzed; wave 1 is linearly unstable with growth rate , and waves 2 and 3 are stable with damping 2 and 3, respectively. The dependence of gross dynamical features on the damping model as characterized by the relation between damping and wave-vector ratios, 2 /3, k2 /k3, and the polarization of the waves, is discussed; two damping models, Landau k and resistive k2, are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist as against flow contraction just requiring.In the case of right-hand RH polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if 2+3/2.
Resumo:
Thermomechanical relaxation events and different water states in cottonseed protein bioplastics are presented whilst investigating the effects of aldehyde cross-linking agents. Thermomechanical relaxation of cottonseed protein bioplastics associated with protein denaturation, moisture absorption and broad glass transitions (Tg) were observed from DSC and DMA measurements. It was shown that variation of the aldehyde influences the storage modulus at very low temperature (below Tg). From measurements of the water fusion point, enthalpy, vaporisation, and weight loss, three water states in the water-absorbed bioplastics are suggested; namely strongly-bound-to-polymer, weakly-bound-to-polymer and bulk-like water. The water content and unreacted cross-linking agents are influential factors in controlling formation of the different water states, whilst the selection of different aldehydes was found to be negligible. These results could be valuable for adjusting the thermomechanical relaxations of protein based bioplastics, and tailoring their properties in wet environments.
Resumo:
We have analysed the geochemical (element analysis), mineralogical and sedimentary facies to characterize the sedimentary record in Fuentillejo maar-lake in the central Spanish volcanic field of Campo de Calatrava and thus be able to reconstruct the cyclicity of the sedimentary and paleoclimatic processes involved. The upper 20 m of core FUENT-1 show variations in clastic input and water chemistry in the lake throughout the last 50 ka cal BP. Being a closed system, the water level in this maar-lake depends primarily on the balance between precipitation and evaporation
Resumo:
The presence of Harpa doris Röding, 1798 in marine deposits of the last interglacial period, ~130-120 ka (marine isotope stage or MIS 5.5) in the Canary Islands (Gran Canaria, Lanzarote and Fuerteventura) enabled us to compare this occurrence with its present habitat in the Gulf of Guinea and the Cape Verde Islands, well to the south. This comparison leads to the conclusion that sea surface temperatures (SSTs) in the waters around the Canary Islands during the last interglacial period were at least 3.3 °C higher than today. H. doris is found in association with the large gastropod Persististrombus latus (Gmelin, 1791) as well as the coral Siderastrea radians (Pallas, 1766). The presence of these extralimital southern,warm-water species in the Canary Islands during the last interglacial period also implies a northward expansion of plankton-feeding larvae in seawater with a high chlorophyll-a content. Such conditionswould require a shortening of the southern arm of the cool Canary Current that dominates the waters around the Canary Islands at present. Marine deposits dating to ~400 ka (MIS 11) are also found on the Canary Islands. In these deposits, the presence of Saccostrea cucullata (Born, 1778) allows a comparison with its present habitat in the Gulf of Guinea. In this analysis, we conclude that SSTs in waters around the Canary Islands during this major interglacial period were at least 4.2 °C higher than today. Middle Pleistocene fossils of S. cucullata have also been found in the western Mediterranean Sea and Morocco, as well as the Cape Verde Islands. If these deposits also date to MIS 11, SST warming could have been a regional phenomenon, including much of the eastern Atlantic Ocean and Mediterranean Sea.
Resumo:
Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. P. sativum, L. culinaris, V. sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNAs from one-hundred isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16-22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S-23S rRNA gene region presented single nucleotide polymorphisms (SNPs) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.
Resumo:
The “peroxy” intermediate (P form) of bovine cytochrome c oxidase was prepared by reaction of the two-electron reduced mixed-valence CO complex with 18O2 after photolytic removal of CO. The water present in the reaction mixture was recovered and analyzed for 18O enrichment by mass spectrometry. It was found that approximately one oxygen atom (18O) per one equivalent of the P form was present in the bulk water. The data show that the oxygen–oxygen dioxygen bond is already broken in the P intermediate and that one oxygen atom can be readily released or exchanged with the oxygen of the solvent water.
Resumo:
The isomerization of chorismate to prephenate by chorismate mutase in the biosynthetic pathway that forms Tyr and Phe involves C5—O (ether) bond cleavage and C1—C9 bond formation in a Claisen rearrangement. Development of negative charge on the ether oxygen, stabilized by Lys-168 and Glu-246, is inferred from the structure of a complex with a transition state analogue (TSA) and from the pH-rate profile of the enzyme and the E246Q mutant. These studies imply a protonated Glu-246 well above pH 7. Here, several 500-ps molecular dynamics simulations test the stability of enzyme–TSA complexes by using a solvated system with stochastic boundary conditions. The simulated systems are (i) protonated Glu-246 (stable), (ii) deprotonated Glu-246 (unstable), (iii) deprotonated Glu-246 plus one H2O between Glu-246 and the ether oxygen (unstable), (iv) the E246Q mutant (stable), and (v) addition of OH− between protonated Glu-246 and the ether oxygen. In (v), a local conformational change of Lys-168 displaced the OH− into the solvent region, suggesting a possible rate-determining step that precedes the catalytic step. In a 500-ps simulation of the enzyme complexed with the reactant chorismate or the product prephenate, no water molecule remained near the oxygen of the ligand. Calculations using the linearized Poisson–Boltzmann equation show that the effective pKa of Glu-246 is shifted from 5.8 to 8.1 as the negative charge on the ether oxygen of the TSA is changed from −0.56 electron to −0.9 electron. Altogether, these results support retention of a proton on Glu-246 to high pH and the absence of a water molecule in the catalytic steps.
Resumo:
Sea urchin coelomocytes represent an excellent experimental model system for studying retrograde flow. Their extreme flatness allows for excellent microscopic visualization. Their discoid shape provides a radially symmetric geometry, which simplifies analysis of the flow pattern. Finally, the nonmotile nature of the cells allows for the retrograde flow to be analyzed in the absence of cell translocation. In this study we have begun an analysis of the retrograde flow mechanism by characterizing its kinetic and structural properties. The supramolecular organization of actin and myosin II was investigated using light and electron microscopic methods. Light microscopic immunolocalization was performed with anti-actin and anti-sea urchin egg myosin II antibodies, whereas transmission electron microscopy was performed on platinum replicas of critical point-dried and rotary-shadowed cytoskeletons. Coelomocytes contain a dense cortical actin network, which feeds into an extensive array of radial bundles in the interior. These actin bundles terminate in a perinuclear region, which contains a ring of myosin II bipolar minifilaments. Retrograde flow was arrested either by interfering with actin polymerization or by inhibiting myosin II function, but the pathway by which the flow was blocked was different for the two kinds of inhibitory treatments. Inhibition of actin polymerization with cytochalasin D caused the actin cytoskeleton to separate from the cell margin and undergo a finite retrograde retraction. In contrast, inhibition of myosin II function either with the wide-spectrum protein kinase inhibitor staurosporine or the myosin light chain kinase–specific inhibitor KT5926 stopped flow in the cell center, whereas normal retrograde flow continued at the cell periphery. These differential results suggest that the mechanism of retrograde flow has two, spatially segregated components. We propose a “push–pull” mechanism in which actin polymerization drives flow at the cell periphery, whereas myosin II provides the tension on the actin cytoskeleton necessary for flow in the cell interior.
Resumo:
Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015
Resumo:
Im Rahmen des TASQWA-Projektes (Quarternary Variability of Water Masses in the Southern Tasman Sea and the Southern Ocean) wurde eine erstmalige quantitative und taxonomische Bestandsaufnahme der rezenten, benthischen Tiefseeforaminiferen der Korngrößenfraktion > 250 µm in 27 Sedimentoberflächenproben aus dem austral-antarktischen Gebiet durchgeführt. Es konnten 137 Arten bestimmt werden, wobei aber keine Art dominante Anteile in den Proben erreichte. Über benthische Tiefseeforaminiferen im untersuchten Gebiet existiert kaum Literatur. Es gibt zwar aus dem 19. Jhrd. sehr gut dokumentierte Foraminiferen in diesem Bereich, diese decken aber längst nicht alle gefundenen Exemplare ab. Erst um die Jahrtausendwende beschäftigten sich Autoren wieder intensiver mit den australischen und neuseeländischen, benthischen Foraminiferen. Aber auch sie drangen nicht bis in die Tiefsee vor, sondern blieben vorwiegend im Schelfbereich. Aufgrund dieser spärlichen Literatur ist jede einzelne Art ausführlich mit Synonymieliste und Abbildung dokumentiert worden. Die PAST-Analyse generierte mit den 137 Arten und den 27 Stationen sechs Faunenvergesellschaftungen, die überwiegend bathymetrisch zoniert sind. Ab 562 m beginnt am Campbell Plateau in der Hochproduktionszone die Bulimina-Vergesellschaftung. Diese Vergesellschaftung zeichnet sich durch die höchste Individuenzahl aus. Ab 959 m findet sich die Rhizammina-Vergesellschaftung, die im Untersuchungsgebiet am weitesten verbreitet ist. Die weniger oft anzutreffende Cibicides-Vergesellschaftung läßt sich ab 1660 m Tiefe finden. Nur in einer einzigen Probe an der Tasmanschwelle in 2146 m Tiefe, tritt die Reophax-Vergesellschaftung auf, in der die Textulariina überwiegen. Die weniger oft anzutreffende Ehrenbergina-Vergesellschaftung läßt sich ab 1841 m finden. In dieser Vergesellschaftung, in der die Artenanzahl fast an das Niveau der Hochproduktionszone heranreicht, halten sich Rotaliina und Textulariina die Waage. Im Emerald Becken ab 3909 m Tiefe beginnt die Jaculella- Vergesellschaftung. Diese liegt in einem echten Hungergebiet und besteht hauptsächlich aus Textulariina. Im gesamten Untersuchungsgebiet lassen sich durch die Probenauswertung vier unterschiedliche Lebensräume (Challenger Plateau, Campbell Plateau, Emerald Becken und Tasmanschwelle) ausmachen. Da jedoch nur zwei Sedimentoberflächenproben am Challenger Plateau genommen wurden, konnte dieser Bereich nur eingeschränkt mit den anderen drei Bereichen verglichen werden. Die Foraminiferengemeinschaften des Challenger Plateaus und der Tasmanschwelle können jedoch im oberen Bereich der Wassersäule auch nur eingeschränkt miteinander verglichen werden, da man an der Tasmanschwelle Sedimentoberflächenproben erst ab 1634 m genommen hat und am Campbell Plateau Proben ab 562 m vorhanden sind. Die oberen Bereiche (ab 562 m bis ca. 1300 m) des Campbell Plateaus sind Hochproduktionsbereiche, die die höchsten Individuenzahlen pro 10 cm**3 Sediment und die höchste Artenvielfalt aufweisen. Am Südwesthang des Campbell Plateaus läßt sich eine Abfolge der verschiedenen Foraminiferenvergesellschaftungen bis hinunter in das Emerald Becken nachweisen. An der Tasmanschwelle selbst läßt sich keine ausgeprägte Hochproduktionszone erkennen. Generell gibt es hier weniger Arten und weniger Individuen pro 10 cm**3 Sediment als am Cambell Plateau. Das Emerald Becken, als tiefster Bereich des Untersuchungsgebietes und als echtes Hungergebiet, nimmt eine Sonderrolle ein.
Resumo:
Two late Quaternary sediment cores from the northern Cape Basin in the eastern South Atlantic Ocean were analyzed for their benthic foraminiferal content and benthic stable carbon isotope composition. The locations of the cores were selected such that both of them presently are bathed by North Atlantic Deep Water (NADW) and past changes in deep water circulation should be recorded simultaneously at both locations. However, the areas are different in terms of primary production. One core was recovered from the nutrient-depleted Walvis Ridge area, whereas the other one is from the continental slope just below the coastal upwelling mixing area where present day organic matter fluxes are shown to be moderately high. Recent data served as the basis for the interpretation of the late Quaternary faunal fluctuations and the paleoceanographic reconstruction. During the last 450,000 years, NADW flux into the eastern South Atlantic Ocean has been restricted to interglacial periods, with the strongest dominance of a NADW-driven deep water circulation during interglacial stages 1, 9 and 11. At the continental margin, high productivity faunas and very low epibenthic d13C values indicate enhanced fluxes of organic matter during glacial periods. This can be attributed to a glacial increase and lateral extension of coastal upwelling. The long term glacial-interglacial paleoproductivity cycles are superimposed by high-frequency variations with a period of about 23,000 yr. Enhanced productivity in surface waters above the Walvis Ridge, far from the coast, is indicated during glacial stages 8, 10 and 12. During these periods, cold, nutrient-rich filaments from the mixing area were probably driven as far as to the southeastern flank of the Walvis Ridge.
Resumo:
Samples of zooplankton were collected in the Barents Sea during cruise 11 of R/V Akademik Sergey Vavilov in September-October 1997. Three different sampling methods were used: 30 l bottle, Judey net, and BR net. More than 40 species of zooplankton were revealed. The greatest species diversity occurred in zones of junction of waters of different origin. Within the 100 m upper water layer zooplankton biomass was rather high: aver. 32 g/m**2. The highest biomass was observed in the northeastern part of the region under study and over the shelf of the Russkaya Gavan' Bay. The lowest biomass occurred in the southern part and in the region of the Gusinaya Banka. The average autumn value of zooplankton biomass in the 100 m upper layer (321 mg/m**3) slightly exceeded the multiannual average for the summer period (200 mg/m**3)
Resumo:
The Red Sea has a special place among the adjacent seas of the world. High evaporation, exclusion of its deep water from contact with the Indian Ocean proper and complete absence of continental drainage may result special conditions of the chemistry of the Red Sea. This paper aims to describe and explain the peculiarity of the hydrochemical situation. The influence of the topography, of the inflow and outflow through the straights of Bab el Mandeb, of the evaporation, of the stability of the water layers, and of the circulation will be studied. An attempt is made to estimate the apparent oxygen ultilisation in order to obtain an indication of the biological activity. A further attempt is made toward the quantitative estimation of the circulation of the nutrients and also to obtain some information about transport, dissolution, and precipitation of calcium carbonate. The basis of these investigations are mainly observations of R. V. "Meteor" during the International Indian Ocean Expedition 1964/65. The determination of dissolved oxygen, dissolved inorganic phosphate, nitrate, nitrite, ammonia, pH, alkalinity, silicate as well as salinity and temperature forms the necessary basis for such an investigation of the chemical conditions. In the first chapter the methods and some modifications for the determination of the chemical properties as applied during the I.I.O.E. cruise of R. V. "Meteor" are described. The new methods, as worked out and tested under sea going conditions during several years by the author, are described in more detail. These are the methods for nitrate, silicate, the automatic determination of dissolved inorganic phosphate and silicate, the automated determination of total phosphorus, the in situ recording of the oxygen tension, and the modification for the determination of ammonia, calcium, and dissolved oxygen. With these revised methods more than 18,000 determinations have been carried out during the Indian Ocean cruise. The complete working up of the chemical data of the Indian Ocean Expedition of R. V. "Meteor" is devided into four sections: Contributions 1) to the Chemistry of the Red Sea and the Inner Gulf of Aden, 2) to the Gulf of Aden and the Somali Coast Region, 3) to the Western Indian Coast Region, and 4) to the Persian Gulf and the Straits of Oman. This paper presents the first contribution. The special hydrographical conditions are discussed. It can be shown, that the increase of salinity in the surface waters from the south to the north of the Red Sea is only to about 30 % due to evaporation. The remaining increase is presumed to be due to the admixture of deep water to the surface layers. A special rate for the consumption of oxygen (0.114 ml/ l/a) is derived for the deep water of the Red Sea at 1500 m. Based upon the distribution of the dissolved oxygen along the axii of the Red Sea, a chematic model for the longitudinal circulation of the Red Sea is constructed. This model should be considered as a first approximation and may explain the special distribution of phosphate, nitrate, and silicate. Based upon the evaluation of the residence time of the deep water a dissolution rate for silicate is estimated as 1 mygat/a. It seems possible to calculate residence times of water masses outside the Red Sea from the silicate content. The increase of silicate and the consumption of oxygen lead to residence times of the water below the thermocine of 30 to 48 years. The distribution of oxygen in the Straits of Bab el Mandeb is described and discussed. The rate of consumption of the oxygen in the outflowing Red Sea water is estimated to 8.5 ml/ l/a. This rather high rate is explained with reference to the special conditions in the outflowing water. The Red Sea water is characterized initially by a relative high content of oxygen and a low content of nutrients. The increase in nutrients and the decrease in the oxygen content is a secondary process of the Red Sea water on its way to the Arabian Sea. Based upon the vertical distribution of the dissolved inorganic phosphate vertical exchange coefficients of 1 - 4 g/cm/sec and vertical current speeds of 10**-5 to 10**-4 cm/sec are calculated for some stations in the Red Sea. The distribution of phosphate, silicate, nitrate, nitrite and ammonia for the Red Sea and the Straits of Bab el Mandeb are discussed. The special circulation is evaluated and the balance of the nutrients is estimated by means of the brutto transport. The nutrient deficit is assumed to be balanced by sporadic inflow of intermediate water from the Gulf of Aden. An example for such an inflow has been observed and is demonstrated. The silicate-salinity relationships are a suitable way for characterizing water masses in the Red Sea. Equations for the calculation of the different components from the carbonate system, the ion activities, and the calcium carbonate saturation are evaluated. The influence of temperature and pressure is taken into account. The carbonate saturation is calculated from the determined concentrations of calcium, alkalinity, and the hydrogen ion activity. Saturation values of 320 % are found for the surface layer and of 100% ± 1 for the deep water. The extraordinary equilibrium conditions may explain the constant Ca/Cl ratio and also the sedimentation of undissolved carbonate skelecons even in greater depths. A main sedimentation rate of 2 * 10**-3cm/year is evaluated from a total sedimentation of 10 * 106 to/a of calcium carbonate in the Red Sea. The appendix contains those data, which are not published in the data volume of the I.I.O.E. expedition of R. V. "Meteor".