927 resultados para visible light spectrophotometry
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cooperative energy-transfer upconversion luminescence in Tb 3+/Yb 3+-codoped PbGeO 3-PbF 2-CdF 2 vitroceramic and its precursor glass under resonant and off-resonance infrared excitation, is investigated. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm, identified as due to the 5D 3( 5G 6 → 7F J(J=6,5,4) and 5D 4 → 7F J(J=6,5,4,3) transitions, respectively, were readily observed. The results indicate that cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The comparison of the upconversion process in a vitroceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective was to evaluate the effect of thermocycling on the color variation of three different composite resins . We studied was Resin Enamel on 3 levels : ( Esthetic X , Opallis and Venus ) ; Resin Dentin in three levels : ( Esthetic X , Opallis and Venus ) and Thermocycling on level 1 : ( 3,000 cycles ) ; variable was the change of color gauged by spectrophotometry . 60 specimens , subdivided into 6 groups were made : GI - Esthetic X Enamel ; GII - Esthetic X dentin ; GIII - Opallis Enamel ; GIV - Opallis dentin ; GV - Enamel and GVI Venus - Venus dentin . The specimens were prepared with a matrix to standardize samples . The inserts of incrementally resins and polymerized with a halogen light Ultralux unit ( Dabi Atlante , Brazil ) with a power of 450mW / cm ² . After fabrication , underwent color reading with a UV Visible Spectrophotometer reflection , UV -2450 ( Shimadzu , Kyoto , Japan ) , with the changes calculated by the system CIE L * a * b * . Then isolates were stored in artificial saliva at 35 ° C ± 2 ° C during 3 months containers being subjected to the effects of thermal cycling for 3000 cycles over the range of 5C to 55C . Again subjected to chromatic evaluation. For the analysis of the results of color change of the studied resins was applied ANOVA two factors at 5 % . The results showed a statistically equal resins enamel GI and GV ( p = 0.79 ) ; the same was not observed for GI and G III resins , where the color change was higher for resin G III ( p = 0.0000002 ) . The same was observed between G III and GV , where the resin enamel G III showed a statistically superior to the color change ( p = 0.0000005 ) Average . Resins to dentin was there a statistical equality between the materials studied . We conclude that the resins studied change in color and resin enamel G III was the most suffered major color changes after aging by thermocycling .
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.
Resumo:
We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of Ag = 0.40 ± 0.12 across 290-450 nm and Ag < 0.12 across 450-570 nm at 1σ confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond ~450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.
Resumo:
Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.
Resumo:
The Middle America active continental margin is the best-sampled active plate margin to date, having been drilled during Legs 84, 67, and 66. With nine sites drilled on the continental slope of Guatemala and an additional site drilled on the Costa Rican slope, a summary of slope sediments and sedimentary processes can be made. Sediments are easily subdivided into a thick apron of Neogene and Quaternary volcanically derived hemipelagic and turbidite mud and mudstone and a thinner, more varied assemblage of mostly Paleogene mudstone, radiolarian mudstone, and limestone. This latter assemblage may contain hiatuses or be completely lacking between slope deposits and basement. Cores from the foot of the continental slope (Core 567A-19) consist of Campanian micrite. The pre-Neogene section is much thicker and of more terrigenous provenance beneath the forearc basin landward of the forearc structural high than on the continental slope. Sedimentary processes of the Neogene and Quaternary slope sediments include reworking of hemipelagic and turbidite deposits. Redeposition by slumping, plastic flow, and turbidity current-documentable through benthic foraminiferal analysis-occurs in intracanyon and canyon settings. Erosion by slumping and by turbidity current and deposition of mud or sand in canyons and in local depressions on the continental slope and different rates of sediment accumulation result in dramatic thickness variations of lithologic units over small distances in localized pockets of sand in small filled canyons on the slope or in sediment ponds, and in high-relief basement topography. The age of sediment overlying igneous basement ranges from Cretaceous to Quaternary. Gas hydrate was visible or inferred present at every site drilled during Leg 84. Nevertheless, except for a small amount in the last core, it was not recovered in sufficient quantities to be visible at Site 568, a site specifically chosen for the study of hydrate and located near Site 496, which was abandoned during Leg 67 because of the dangerous abundance of hydrates. The association of hydrate with porous, coarser sediment results in a distribution as localized and unpredictable as the slope sands off Guatemala, which do not occur in beds coherent enough to produce acoustic reflection. Although the normal lithologic section at Sites 567 and 496 limits the volume of sediment that could be part of an accretionary prism offshore Guatemala and the volume of sediment in the Trench axis is not sufficient to argue for significant accumulation of Cocos Plate sediments, the varied lithology and attenuated thickness of pre-Neogene sediment seaward of the forearc structural high do not exclude earlier accretion from the history of the Guatemalan continental margin.
Resumo:
Bio-optical characteristics of phytoplankton have been observed during two-year monitoring in the western Black Sea. High variability in light absorption coefficient of phytoplankton was due to change of pigment concentration and chlorophyll a specific absorption coefficient. A relationships between light absorption coefficients and chlorophyll a concentration have been found: for the blue maximum (a_ph(440) = 0.0413x**0.628; R**2 = 0.63) and for the red maximum (?_ph(678) = 0.0190x**0.843; R**2 = 0.83). Chlorophyll a specific absorption coefficients decreased while pigment concentration in the Sea increased. Observed variability in chlorophyll a specific absorption coefficient at chlorophyll a concentrations <1.0 mg/m**3 had seasonal features and was related with seasonal change of intracellular pigment concentration. Ratio between the blue and red maxima decreased with increasing chlorophyll a concentration (? = 2.14 x**-0.20; R**2 = 0.41). Variability of spectrally averaged absorption coefficient of phytoplankton (a'_ph ) on 95% depended on absorption coefficient at the blue maximum (y = 0.421x; R**2 = 0.95). Relation of a_ph with chlorophyll a concentration was described by a power function (y = 0.0173x**0.0709; R**2 = 0.65). Change of spectra shape was generally effected by seasonal dynamics of intracellular pigment concentration, and partly effected by taxonomic and cell-size structure of phytoplankton.