994 resultados para velocity distributions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a coarse-grained yet microscopic detailed model to study the statistical fluctuations of single-molecule protein conformational dynamics of adenylate kinase. We explored the underlying conformational energy landscape and found that the system has two basins of attractions, open and closed conformations connected by two separate pathways. The kinetics is found to be nonexponential, consistent with single-molecule conformational dynamics experiments. Furthermore, we found that the statistical distribution of the kinetic times for the conformational transition has a long power law tail, reflecting the exponential density of state of the underlying landscape. We also studied the joint distribution of the two pathways and found memory effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), in CHCl3 at 25 degrees C have been studied using laser light scattering. We found that the z-average radius of gyration ([R(g)]) can be scaled to the weight-average molecular weight (M(w)) as [R(g)] (nm) = 4.95 x 10(-2)M(w)(0.52) and [R(g)] (nm) = 1.25 x 10(-2)M(w)(0.66) respectively for poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), indicating that poly(ODPA/DMMDA) in CHCl3 at 25 degrees C has a more extended chain conformation than poly(BCPOBDA/DMMDA). Using the wormlike chain model approach, we found that the Flory characteristic ratios (C*) of poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA) are similar to 20 and similar to 31, respectively, indicating that both of them have a slightly extended chain conformation in comparison with typical flexible polymer chains, such as polystyrene, whose C-infinity is similar to 10. A combination of the weight-average molar mass (M(w)) with the translational diffusion coefficient distributions (G(D)) has led to D (cm(2)/s) = 3.53 x 10(-4)M(-0.579) and D (cm(2)/s) = 4.30 x 10(-4)M(-0.613) respectively for two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMTA), in CHCl3 at 25 degrees C. Using these two calibrations, we have successfully characterized the molar mass distributions of the two polyimides from their corresponding G(D)s. The exponents of these two calibrations further confirm that both of the polyimides have a slightly extended coil chain conformation in CHCl3. The chain flexibility difference between these two polyimides has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P wave velocity of the pumice sample from the middle Okinawa Trough and andesite sample from vicinity Yingdao volcanic island, Kyushu Japan were measured at temperature (from room temperature to 1500 C) and pressure (from room pressure to 2.4GPa) using a multi-anvil pressure apparatus called the YJ-3000 press. The measured data shows that at low temperature and low pressure (<1GPa, <800degreesC), the P wave velocity of pumice is lower than that of andesite, while at high temperature and high pressure (>1GPa, >800degreesC) the P wave velocity of pumice and andesite. becomes consistent (5.9km/s). The paper points out that 1GPa/800degreesC is the point of thermodynamic phase transformation Okinawa Trough pumice and vicinity andesite, and the point is deeper than 18km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Luzon Strait is the only deep channel that connects the South China Sea (SCS) with the Pacific. The transport through the Luzon Strait is an important process influencing the circulation, heat and water budgets of the SCS. Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial. On the basis of hydrographic measurements from CTD along 120 degrees E in the Luzon Strait during the period from September 18 to 20 in 2006, the characteristics of temperature, salinity and density distributions are analyzed. The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation. The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer, and the flow is relatively weak and eastward in the deeper layer. The net volume transport of the Luzon Strait during the observation period is westward, amounts to about 3.25 Sv. This result is consistent with historical observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we describe the velocity structure and transport of the North Equatorial Current (NEC), the Kuroshio, and the Mindanao Current (MC) using repeated hydrographic sections near the Philippine coast. A most striking feature of the current system in the region is the undercurrent structure below the surface flow. Both the Luzon Undercurrent and the Mindanao Undercurrent appear to be permanent phenomena. The present data set also provides an estimate of the mean circulation diagram (relative to 1500 dbar) that involves a NEC transport of 41 Sverdrups (Sv), a Kuroshio transport of 14 Sv, and a MC transport of 27 Sv, inducing a mass balance better than 1 Sv within the region enclosed by stations. The circulation diagram is insensitive to vertical displacements of the reference level within the depth range between 1500 and 2500 dbar. Transport fluctuations are, in general, consistent with earlier observations; that is, the NEC and the Kuroshio vary in the same phase with a seasonal signal superimposed with interannual variations, and the transport of the MC is dominated by a quasi-biennial oscillation. Dynamic height distributions are also examined to explore the dynamics of the current system.