997 resultados para vapor transport equilibration (VTE)
Resumo:
InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]
Resumo:
The vapor pressure of pure liquid indium, and the sum of pressures of (In) and (In2O) species over the condensed phase mixture {In} +
Resumo:
The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.
Resumo:
The Gibbs-Bogoliubov formalism in conjunction with the pseudopotential theory is applied to the calculation of the vapour pressure of eight liquid metals from Groups I to IV of the periodic table and of alloys (Na-K). The calculated vapour pressure of the elements and their temperature dependencies, the partial pressures, activities and boiling points of the alloys are all found to be in reasonable agreement with measured data.
Resumo:
The Gibbs energy of formation of titania-saturated lead titanate has been determined by e.m.f. measurements on the solid state cell;Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt in the temperature range 1075–1350 K. The results obtained are significantly different from those reported in the literature based upon vapour pressure measurements, employing Knudsen effusion and transportation techniques, and assuming that the vapor phase consisted entirely of monomeric PbO molecules. A reanalysis of the data obtained in the earlier vapor pressure studies using mass spectrometric measurements on polymeric PbO species in the gas phase, gives Gibbs energies of formation of lead titanate which are in better agreement with those obtained in this study. Earlier electrochemical measurements by Mehrotra et al. and more recent electrochemical measurements by Schmahl et al. both employing CaO-ZrO2 solid electrolytes are in good agreement with the present study. The electro-chemical measurements by Schmahl et al. using PbF 2 solid electrolyte give a slightly more positive Gibbs energy of formation. There was no evidence supporting the formation of compounds other than Pb1−xTiO3−x from yellow PbO and rutile form of TiO2 in the temperature range covered in this study.Résumé L'enthalpie libre de formation du titanate de plomb saturé en oxyde de titane a été déterminée par des mesures de FEM de la pile: Pt,Ir,Pb + Pb1−xTiO3−x + TiO2(rutile)/CaO-ZrO2/Ni + NiO,Pt dans le domaine de températures 1075–1350 K. Les résultats obtenus, different appréciablement de ceux publiés, déterminés par mesures de tensions de vapeur (techniques de transport et d'effusion de Knudsen) en supposant que la phase gazeuse etait uniquement constituée de molécules monomériques de PbO. Une réanalyse des résultats de la littérature, à partir de mesures par spectrométrie de masse sur les polymères de PbO gazeux, donne des enthalpies libres de formation du titanate de plomb se rapprochant de celles obtenues dans cette étude. Les mesures de Mehrotra et al. et plus récemment de Schmahl et al. utilisant toutes deux l'électrolyte CaO-ZrO2 concordent bien avec celles de la présente étude. Les mesures de Schmahl et al., à l'aide de l' électrolyte solide PbF2, donnent une enthalpie de formation légèrement plus positive. Pour la gammede températures étudiée, rien ne permet de supposer que des composés autres que Pb1−x TiO3−x puissent se former à partir du PbO Gaune) et du rutile (TiO2).
Resumo:
An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.
Resumo:
In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.