922 resultados para value systems alignment
Resumo:
We study the Kondo and transport properties of a quantum dot with a single magnetic Mn ion connected to metallic leads. By employing a numerical renormalization group technique we show that depending on the value of ferromagnetic coupling strength between the local electronic spin and the magnetic moment of the Mn, two distinct Kondo regimes exist. In the weak-coupling limit, the system can be found in a completely screened Kondo state describing a local magnetic moment decoupled from the rest of the system. In contrast, in the strong-coupling regime the quantum dot spin and the local magnetic moment form a single large-spin entity partially Kondo screened. A crossover between these two regimes can be suitably tuned by varying the tunnel coupling between the quantum dot and the leads. The model investigated here is also suitable to study magnetic molecules adsorbed on a metallic surface. The rich phenomenology of these systems is reflected in the conductance across the system.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
We consider a polling model with multiple stations, each with Poisson arrivals and a queue of infinite capacity. The service regime is exhaustive and there is Jacksonian feedback of served customers. What is new here is that when the server comes to a station it chooses the service rate and the feedback parameters at random; these remain valid during the whole stay of the server at that station. We give criteria for recurrence, transience and existence of the sth moment of the return time to the empty state for this model. This paper generalizes the model, when only two stations accept arriving jobs, which was considered in [Ann. Appl. Probab. 17 (2007) 1447-1473]. Our results are stated in terms of Lyapunov exponents for random matrices. From the recurrence criteria it can be seen that the polling model with parameter regeneration can exhibit the unusual phenomenon of null recurrence over a thick region of parameter space.
Resumo:
Background -: Beta-2 adrenergic receptor gene polymorphisms Gln27Glu, Arg16Gly and Thr164Ile were suggested to have an effect in heart failure. We evaluated these polymorphisms relative to clinical characteristics and prognosis of alarge cohort of patients with heart failure of different etiologies. Methods -: We studied 501 patients with heart failure of different etiologies. Mean age was 58 years (standard deviation 14.4 years), 298 (60%) were men. Polymorphisms were identified by polymerase chain reaction-restriction fragment length polymorphism. Results -: During the mean follow-up of 12.6 months (standard deviation 10.3 months), 188 (38%) patients died. Distribution of genotypes of polymorphism Arg16Gly was different relative to body mass index (chi(2) = 9.797; p = 0.04). Overall the probability of survival was not significantly predicted by genotypes of Gln27Glu, Arg16Gly, or Thr164Ile. Allele and haplotype analysis also did not disclose any significant difference regarding mortality. Exploratory analysis through classification trees pointed towards a potential association between the Gln27Glu polymorphism and mortality in older individuals. Conclusion -: In this study sample, we were not able to demonstrate an overall influence of polymorphisms Gln27Glu and Arg16Gly of beta-2 receptor gene on prognosis. Nevertheless, Gln27Glu polymorphism may have a potential predictive value in older individuals.
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
Outgassing of carbon dioxide (CO(2)) from rivers and streams to the atmosphere is a major loss term in the coupled terrestrial-aquatic carbon cycle of major low-gradient river systems (the term ""river system"" encompasses the rivers and streams of all sizes that compose the drainage network in a river basin). However, the magnitude and controls on this important carbon flux are not well quantified. We measured carbon dioxide flux rates (F(CO2)), gas transfer velocity (k), and partial pressures (p(CO2)) in rivers and streams of the Amazon and Mekong river systems in South America and Southeast Asia, respectively. F(CO2) and k values were significantly higher in small rivers and streams (channels <100 m wide) than in large rivers (channels >100 m wide). Small rivers and streams also had substantially higher variability in k values than large rivers. Observed F(CO2) and k values suggest that previous estimates of basinwide CO(2) evasion from tropical rivers and wetlands have been conservative and are likely to be revised upward substantially in the future. Data from the present study combined with data compiled from the literature collectively suggest that the physical control of gas exchange velocities and fluxes in low-gradient river systems makes a transition from the dominance of wind control at the largest spatial scales (in estuaries and river mainstems) toward increasing importance of water current velocity and depth at progressively smaller channel dimensions upstream. These results highlight the importance of incorporating scale-appropriate k values into basinwide models of whole ecosystem carbon balance.
Resumo:
No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.
Resumo:
Multi-pumping flow systems exploit pulsed flows delivered by Solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows. such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Soil acidity is one of the main limiting factors for the growth of pasture grasses in Brazilian soils. In addition to lime, slag can be used to correct soil acidity and help plants to absorb nutrients in adequate amounts. The objective of this experiment was to evaluate, under greenhouse conditions, the effects of slag and lime plus nitrogen (N) on marandu palisade grass plants` nutritional status as well as the absorption of macronutrients submitted to two cuts. The treatments consisted of two corrective materials (slag and lime), three corrective material rates (0.81, 1.61, and 3.22 g dm-3 of ECaCO3), three N rates (75, 150, and 300 mg dm-3) plus a control treatment, with four replications. Macronutrient contents in the forage plants were found to be present in adequate levels. The mean value of N accumulated in the shoot was 40.1 mg per plant, phosphorus (P) was 4.6 mg per plant, potassium (K) was 38.6 mg per plant, calcium (Ca) was 7.3 mg per plant, magnesium (Mg) was 6.7 mg per plant, and sulfur (S) was 3.5 mg per plant at the first cut. At the second cut, the nutrient accumulations values were N 50.8 mg per plant, P 6.3 mg per plant, K 20.7 mg per plant, Ca 21.6 mg per plant, Mg 24.0 mg per plant, and S 4.7 mg per plant. Macronutrients accumulation in the shoot of grass increased with the addition of both the correctives as well as the N rates.
Resumo:
Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
In this work we study an agent based model to investigate the role of asymmetric information degrees for market evolution. This model is quite simple and may be treated analytically since the consumers evaluate the quality of a certain good taking into account only the quality of the last good purchased plus her perceptive capacity beta. As a consequence, the system evolves according to a stationary Markov chain. The value of a good offered by the firms increases along with quality according to an exponent alpha, which is a measure of the technology. It incorporates all the technological capacity of the production systems such as education, scientific development and techniques that change the productivity rates. The technological level plays an important role to explain how the asymmetry of information may affect the market evolution in this model. We observe that, for high technological levels, the market can detect adverse selection. The model allows us to compute the maximum asymmetric information degree before the market collapses. Below this critical point the market evolves during a limited period of time and then dies out completely. When beta is closer to 1 (symmetric information), the market becomes more profitable for high quality goods, although high and low quality markets coexist. The maximum asymmetric information level is a consequence of an ergodicity breakdown in the process of quality evaluation. (C) 2011 Elsevier B.V. All rights reserved.