944 resultados para uncertainty aversion
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
As ações de maior liquidez do índice IBOVESPA, refletem o comportamento das ações de um modo geral, bem como a relação das variáveis macroeconômicas em seu comportamento e estão entre as mais negociadas no mercado de capitais brasileiro. Desta forma, pode-se entender que há reflexos de fatores que impactam as empresas de maior liquidez que definem o comportamento das variáveis macroeconômicas e que o inverso também é uma verdade, oscilações nos fatores macroeconômicos também afetam as ações de maior liquidez, como IPCA, PIB, SELIC e Taxa de Câmbio. O estudo propõe uma análise da relação existente entre variáveis macroeconômicas e o comportamento das ações de maior liquidez do índice IBOVESPA, corroborando com estudos que buscam entender a influência de fatores macroeconômicos sobre o preço de ações e contribuindo empiricamente com a formação de portfólios de investimento. O trabalho abrangeu o período de 2008 a 2014. Os resultados concluíram que a formação de carteiras, visando a proteção do capital investido, deve conter ativos com correlação negativa em relação às variáveis estudadas, o que torna possível a composição de uma carteira com risco reduzido.
Resumo:
It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.