926 resultados para type III secretion
Resumo:
Amphibian skin secretions represent a unique resource for the discovery of new bioactive peptides. Here we report the isolation, structural and functional characterization of a novel heptapeptide amide, DMSPPWHamide, from the defensive skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. This peptide is of unique primary structure and has been classified as a member of the rather heterogenous tryptophyllin-2 (T-2) family of amphibian skin peptides and named P. dacnicolor Tryptophyllin-2 (PdT-2) in accordance. PdT-2 is the first Type 2-tryptophyllin to possess discrete bioactivity. Both natural and synthetic replicates of the peptide were found to contract the smooth muscle of rat urinary bladder, the latter displaying an EC50 of 4 nM.
Effects of nateglinide on the secretion of glycated insulin and glucose tolerance in type 2 diabetes
Resumo:
Aims: Glycation of insulin has been demonstrated within pancreatic beta-cells and the resulting impaired bioactivity may contribute to insulin resistance in diabetes. We used a novel radioimmunoassay to evaluate the effect of nateglinide on plasma concentrations of glycated insulin and glucose tolerance in type 2 diabetes. Methods. Ten patients (5 M/5 F, age 57.8 +/- 1.9 years, HbA(1c), 7.6 +/- 0.5%,, fasting plasma glucose 9.4 +/- 1.2 mmol/l, creatinine 81.6 +/- 4.5 mumol/l) received oral nateglinide 120 mg or placebo, 10 min prior to 75 g oral glucose in a random, single blind, crossover design, 1 week apart. Blood samples were taken for glycated insulin, glucose, insulin and C-peptide over 225 min. Results: Plasma glucose and glycated insulin responses were reduced by 9% (P = 0.005) and 38% (P = 0.047), respectively, following nateglinide compared with placebo. Corresponding AUC measures for insulin and C-peptide were enhanced by 36% (P = 0.005) and 25% (P = 0.007) by nateglinide. Conclusions: Glycated insulin in type 2 diabetes is reduced in response to the insulin secretagogue nateglinide, resulting in preferential release of native insulin. Since glycated insulin exhibits impaired biological activity, reduced glycated insulin release may contribute to the anti hyperglycaemic action of nateglinide. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
UVES interstellar observations from the Paranal Observatory Project are presented for early-type stars located in the line of sight to the nearby open clusters IC 2391 (Omni Vel) and NGC 6475 (M7), with spectroscopic resolution R similar to 80 000 and signal-to-noise ratios in the Ti II (3383 angstrom), Ca II K, CH+ (4232 angstrom), Na I D and K I (7698 angstrom) lines of several hundred. The sightlines are a mixture of cluster and non-cluster objects. A total of 22 early-type stars (A and B type) are present in our sample towards IC 2391, with 21 towards NGC 6475/M7, and enable us to probe for differences in column density on scales from similar to 0.07 to 7.3 and similar to 0.05 to 4.9 pc in the respective clusters. Additionally, towards Praesepe the Na I D interstellar variation only is probed towards 13 sightlines and transverse scales of similar to 0.16-10.7 pc at R = 70 000. Towards IC 2391 variations are found in Ti II, Ca II K and Na I D column density in different sightlines of up to 0.7, 1.0 and 1.8 dex (excluding one star), respectively. This kind of variability correlates well with the Hipparcos parallax of the objects, and probes structure within the Local Bubble. For cluster-only objects the variations are 0.3, 0.3 and 0.5 dex, respectively. For the field of view towards NGC6475 the corresponding maximum variations are somewhat smaller, being 0.5, 0.3, 0.8 and 1.0 dex for Ti II, Ca II K, Na I and K I, respectively, for all objects and 0.4, 0.2, 0.6 and 0.7 dex for the cluster-only objects. These are uncorrelated with parallax, and again demonstrate that Ca II K tends to be more smoothly distributed than Na I D. A few likely cluster sightlines show evidence for CH+ and variations in this molecular species of a factor of 10 in equivalent width over sub-pc scales. Towards Praesepe variation in interstellar Na I D is small, being a maximum of only similar to 0.4 dex (including measurement errors), but with fewer sightlines studied. Overall, the scatter in the data is similar for the singly ionized species Ti II and Ca II, lending more support to the hypothesis that these two species sample similar parts of the interstellar medium (ISM). This also appears to be the case for the neutral species Na I D and K I in the one cluster studied. Finally, multiple-epoch observations from a variety of archive sources are used to search for astronomical unit (au) scale structure in the ISM towards 46 sightlines. There are tentative indications of structure on scales of tens to thousands of au for three sightlines. Future observations will confirm the veracity or otherwise of the time-variable components and others presented.
Resumo:
Amphibian skin secretions are, for the most part, complex peptidomes. While many peptide components have been biologically- and structurally-characterised into discrete "families", some of which are analogues of endogenous vertebrate regulatory peptides, a substantial number are of unique structure and unknown function. Among the components of these secretory peptidomes is an array of protease inhibitors. Inhibitors of trypsin are of widespread occurrence in different taxa and are representative of many established structural classes, including Kunitz, Kazal and Bowman-Birk. However, few protease inhibitors with activity against other specific proteases have been described from this source. Here we report for the first time, the isolation and structural characterisation of an inhibitor of chymotrypsin of Kunitz-type from the skin secretion of the African hyperoliid frog, Kassina senegalensis. To this end, we employed a functional peptidomic approach. This scheme involves fractionation of the peptidome, functional end-point screening, structural characterisation of resultant actives followed by molecular cloning of biosynthetic precursor-encoding cDNA(s). The novel mature and active polypeptide identified consisted of 62 amino acid residues (average molecular mass 6776.24 Da), of which 6 were positionally-conserved cysteines. The P(1) position within the active site was occupied by a phenylalanyl residue. Bioinformatic analysis of the sequence using BLAST, revealed a structural similarity to Kunitz-type chymotrypsin inhibitors from other organisms, ranging from silkworms to snakes.
Resumo:
The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.
Resumo:
We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure—GMRPPWF-NH2—was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μM). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.
Resumo:
In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.
Statut des transporteurs du cholestérol au niveau de l'intestin et du foie dans le diabète de type 2
Resumo:
La résistance à l’insuline et le diabète de type 2 (DT2) sont caractérisés par une hyperlipidémie. Le but de cette étude est de déterminer si le DT2 contribue au dérèglement du métabolisme du cholestérol au niveau du petit intestin et du foie du Psammomys obesus, un modèle animal nutritionnel d’induction de la résistance à l’insuline et du DT2. L’absorption intestinale du cholestérol est diminuée chez les animaux diabétiques. Cette diminution est associée à une baisse (i) de l’expression génique et protéique de NPC1-L1 qui joue un rôle primordial dans l’absorption du cholestérol au niveau des entérocytes; et (ii) de l’ARNm de l’ABCA1 responsable de l’efflux de cholestérol des cellules intestinales à l’apolipoprotéine A-I et aux HDLs. En ce qui a trait aux transporteurs SR-B1 et Annexin II, aucune différence n’a été observée au niveau intestinal. Toutefois, une diminution significative de l’expression génique de l’ABCG5, un intervenant majeur dans la sécrétion du cholestérol des entérocytes vers la lumière intestinale, est mesurée chez les animaux diabétiques. De plus, l’expression protéique est diminuée pour le PCSK9 et augmentée pour le LDLr au niveau du jéjunum, tandis que la quantité de protéine de l’enzyme HMG-CoA réductase est régulée à la baisse chez les Psammomys obesus diabétiques. Finalement, de tous les facteurs de transcription testés seule une augmentation de LXR et une diminution de PPAR/δ sont détectées au niveau de l’intestin. Au niveau hépatique, il y a (i) une augmentation de la masse protéique de NPC1-L1, SR-BI et Annexin II; (ii) une élévation l’ARNm de SR-BI; (iii) une diminution du contenu protéique de ABCG8 et de l’expression génique de l’ABCG5 et de l’ABCA1; et (iv) une élévation de l’ARNm de LXR et de PPAR/δ, tout comme une baisse de l’expression protéique de SREBP-2. Somme toute, nos résultats montrent que le développement du diabète de type 2 chez le Psammomys obesus entraîne un changement dans la machinerie intra-entérocytaire et hépatocytaire, qui mène à un dérèglement de l’homéostasie du cholestérol.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.
Resumo:
Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Genome-wide association studies have identified SNPs reproducibly associated with type 2 diabetes (T2D). We examined the effect of genetic predisposition to T2D on insulin sensitivity and secretion using detailed phenotyping in overweight individuals with no diagnosis of T2D. Furthermore, we investigated whether this genetic predisposition modifies the responses in beta-cell function and insulin sensitivity to a 24-week dietary intervention. We genotyped 25 T2D-associated SNPs in 377 white participants from the RISCK study. Participants underwent an IVGTT prior to and following a dietary intervention that aimed to lower saturated fat intake by replacement with monounsaturated fat or carbohydrate. We composed a genetic predisposition score (T2D-GPS) by summing the T2D risk-increasing alleles of the 25 SNPs and tested for association with insulin secretion and sensitivity at baseline, and with the change in response to the dietary intervention. At baseline, a higher T2D-GPS was associated with lower acute insulin secretion (AIRg 4% lower/risk allele, P = 0.006) and lower insulin secretion for a given level of insulin sensitivity, assessed by the disposition index (DI 5% lower/risk allele, P = 0.002), but not with insulin sensitivity (Si). T2D-GPS did not modify changes in insulin secretion, insulin sensitivity or the disposition index in response to the dietary interventions to lower saturated fat. Participants genetically predisposed to T2D have an impaired ability to compensate for peripheral insulin resistance with insulin secretion at baseline, but this does not modify the response to a reduction in dietary saturated fat through iso-energetic replacement with carbohydrate or monounsaturated fat.