968 resultados para tumor necrosis factor alpha converting enzyme inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kappaB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-alpha, IL-6, and IL-1beta), chemokines (CCL2/MCP-1, CXCL1/GROalpha, CXCL3/GROgamma, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-angiogenic therapies are currently in cancer clinical trials, but to date there are no established tests for evaluating the angiogenic status of a patient. We measured 11 circulating angiogenesis-associated molecules in cancer patients before and after local treatment. The purpose of our study was to screen for possible relationships among the different molecules and between individual molecules and tumor burden. We measured VEGF-A, PlGF, SCF, MMP-9, EDB+ -fibronectin, sVEGFR-2, sVEGFR-1, salphaVbeta3, sTie-2, IL-8 and CRP in the blood of 22 healthy volunteers, 17 early breast, 17 early colorectal, and 8 advanced sarcoma/melanoma cancer patients. Breast cancer patients had elevated levels of VEGF-A and sTie-2, colorectal cancer patients of VEGF-A, MMP-9, sTie-2, IL-8 and CRP, and melanoma/sarcoma patients of sVEGFR-1. salphaVbeta3 was decreased in colorectal cancer patients. A correlation between VEGF-A and MMP-9 was found. After tumor removal, MMP-9 and salphaVbeta3 significantly decreased in breast and CRP in colorectal cancer, whereas sVEGFR-1 increased in colorectal cancer patients. In sarcoma/melanoma patients treated regionally with TNF and chemotherapy we observed a rise in VEGF-A, SCF, VEGFR-2, MMP-9, Tie-2 and CRP, a correlation between CRP and IL-8, and a decreased in sVEGFR-1 levels. In conclusion, among all factors measured, only VEGF-A and MMP-9 consistently correlated to each other, elevated CRP levels were associated with tumor burden, whereas sVEGF-R1 increased after tumor removal in colorectal cancer. Treatment with chemotherapy and TNF induced changes consistent with an angiogenic switch. These results warrant a prospective study to compare the effect of surgical tumor removal vs. chemotherapy on some of these markers and to evaluate their prognostic/predictive value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2008 three biological agents against TNFalpha will be available. The combination of infliximab with azathioprine is no longer recommended, as hepatosplenic lymphomas with a particularly bad prognosis have been associated with this combined therapy. Regular maintenance therapy with infliximab is as effective in preventing the development of anti-infliximab antibodies as co-administration of this anti-TNFalpha agent with an immunomodulator. The benefit of regular maintenance therapy is probably linked to the presence of residual trough levels of infliximab between perfusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Involvement of the central or peripheral nervous system, frequently present in systemic inflammatory immune disorders, has to be considered a severe threat and requires aggressive immunosuppressive treatment to achieve rapid remission. This is usually obtained with high-dose systemic corticosteroids combined with cyclophosphamide. Once remission is obtained, immunosuppressive agents with a more favorable safety profile are needed to exert a corticosteroid-sparing effect and minimize adverse events. New therapeutic approaches are currently developed to treat autoimmune diseases, mostly linked to the definition of new indications for biological agents such as TNF-alpha antagonists and rituximab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TNF ligand family member BAFF (B cell activating factor belonging to the TNF family, also called Blys, TALL-1, zTNF-4, or THANK) is an important survival factor for B cells [corrected]. In this study, we show that BAFF is able to regulate T cell activation. rBAFF induced responses (thymidine incorporation and cytokine secretion) of T cells, suboptimally stimulated through their TCR. BAFF activity was observed on naive, as well as on effector/memory T cells (both CD4+ and CD8+ subsets), indicating that BAFF has a wide function on T cell responses. Analysis of the signal transduced by BAFF into T cells shows that BAFF has no obvious effect on T cell survival upon activation, but is able to deliver a complete costimulation signal into T cells. Indeed, BAFF is sufficient to induce IL-2 secretion and T cell division, when added to an anti-TCR stimulation. This highlights some differences in the BAFF signaling pathway in T and B cells. In conclusion, our results indicate that BAFF may play a role in the development of T cell responses, in addition to its role in B cell homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYAstrocytes represent the largest cell population in the human brain. In addition to a well established role as metabolic support for neuronal activity, in the last years these cells have been found to accomplish other important and, sometimes, unexpected functions. The tight enwrapping of synapses by astrocytic processes and the predominant expression of glutamate uptake carriers in the astrocytic rather than neuronal plasma membranes brought to the definition of a critical involvement of astrocytes in the clearance of glutamate from synaptic junctions. Moreover, several publications showed that astrocytes are able to release chemical transmitters (gliotransmitters) suggesting their active implication in the control of synaptic functions. Among gliotransmitters, the best characterized is glutamate, which has been proposed to be released from astrocytes in a Ca2+ dependent manner via exocytosis of synaptic-like microvesicles.In my thesis I present results leading to substantial advancement of the understanding of the mechanisms by which astrocytes modulate synaptic activity in the hippocampus, notably at excitatory synapses on dentate granule cells. I show that tumor necrosis factor- alpha (TNFa), a molecule that is generally involved in immune system functions, critically controls astrocyte-to-synapse communication (gliotransmission) in the brain. With constitutive levels of TNFa present, activation of purinergic G protein-coupled receptors in astrocytes, called P2Y1 receptors, induces localized intracellular calcium ([Ca2+]j) elevation in astrocytic processes (measured by two-photon microscopy) followed by glutamate release and activation of pre-synaptic NMDA receptors resulting in synaptic potentiation. In preparations lacking TNFa, astrocytes respond with identical [Ca2+]i elevations but fail to induce neuromodulation. I find that TNFa specifically controls the glutamate release step of gliotransmission. Addition of very low (picomolar) TNFa concentrations to preparations lacking the cytokine, promptly reconstitutes both normal exocytosis in cultured astrocytes and gliotransmission in hippocampal slices. These data provide the first demonstration that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca2+]i elevations but also by permissive/homeostatic factors like TNFa.In addition, I find that higher and presumably pathological TNFa concentrations do not act just permissively but instead become direct and potent triggers of glutamate release from astrocytes, leading to a strong enhancement of excitatory synaptic activity. The TNFa action, like the one observed upon P2Y1R activation, is mediated by pre-synaptic NMDA receptors, but in this case the effect is long-lasting, and not reversible. Moreover, I report that a necessary molecular target for this action of TNFa is TNFR1, one of the two specific receptors for the cytokine, as I found that TNFa was unable to induce synaptic potentiation when applied in slices from TNFR1 knock-out (Tnfrlv") mice. I then created a double transgenic mouse model where TNFR1 is knocked out in all cells but can be re-expressed selectively in astrocytes and I report that activation of the receptors in these cells is sufficient to reestablish TNFa-dependent long-lasting potentiation of synaptic activity in the TNFR1 knock-out mice.I therefore discovered that TNFa is a primary molecule displaying both permissive and instructive roles on gliotransmission controlling synaptic functions. These reports might have profound implications for the understanding of both physiological and pathological processes associated to TNFa production, including inflammatory processes in the brain.RÉSUMÉLes astrocytes sont les cellules les plus abondantes du cerveau humain. Outre leur rôle bien établi dans le support métabolique de l'activité neuronale, d'autres fonctions importantes, et parfois inattendues de ces cellules ont été mises en lumière au cours de ces dernières années. Les astrocytes entourent étroitement les synapses de leurs fins processus qui expriment fortement les transporteurs du glutamate et permettent ainsi aux astrocytes de jouer un rôle critique dans l'élimination du glutamate de la fente synaptique. Néanmoins, les astrocytes semblent être capables de jouer un rôle plus intégratif en modulant l'activité synaptique, notamment par la libération de transmetteurs (gliotransmetteurs). Le gliotransmetteur le plus étudié est le glutamate qui est libéré par l'exocytose régulée de petites vésicules ressemblant aux vésicules synaptiques (SLMVs) via un mécanisme dépendant du calcium.Les résultats présentés dans cette thèse permettent une avancée significative dans la compréhension du mode de communication de ces cellules et de leur implication dans la transmission de l'information synaptique dans l'hippocampe, notamment des synapses excitatrices des cellules granulaires du gyrus dentelé. J'ai pu montrer que le « facteur de nécrose tumorale alpha » (TNFa), une cytokine communément associée au système immunitaire, est aussi fondamentale pour la communication entre astrocyte et synapse. Lorsqu'un niveau constitutif très bas de TNFa est présent, l'activation des récepteurs purinergiques P2Y1 (des récepteurs couplés à protéine G) produit une augmentation locale de calcium (mesurée en microscopie bi-photonique) dans l'astrocyte. Cette dernière déclenche ensuite une libération de glutamate par les astrocytes conduisant à l'activation de récepteurs NMDA présynaptiques et à une augmentation de l'activité synaptique. En revanche, dans la souris TNFa knock-out cette modulation de l'activité synaptique par les astrocytes n'est pas bien qu'ils présentent toujours une excitabilité calcique normale. Nous avons démontré que le TNFa contrôle spécifiquement l'exocytose régulée des SLMVs astrocytaires en permettant la fusion synchrone de ces vésicules et la libération de glutamate à destination des récepteurs neuronaux. Ainsi, nous avons, pour la première fois, prouvé que la modulation de l'activité synaptique par l'astrocyte nécessite, pour fonctionner correctement, des facteurs « permissifs » comme le TNFa, agissant sur le mode de sécrétion du glutamate astrocytaire.J'ai pu, en outre, démontrer que le TNFa, à des concentrations plus élevées (celles que l'on peut observer lors de conditions pathologiques) provoque une très forte augmentation de l'activité synaptique, agissant non plus comme simple facteur permissif mais bien comme déclencheur de la gliotransmission. Le TNFa provoque 1'activation des récepteurs NMD A pré-synaptiques (comme dans le cas des P2Y1R) mais son effet est à long terme et irréversible. J'ai découvert que le TNFa active le récepteur TNFR1, un des deux récepteurs spécifiques pour le TNFa. Ainsi, l'application de cette cytokine sur une tranche de cerveau de souris TNFR1 knock-out ne produit aucune modification de l'activité synaptique. Pour vérifier l'implication des astrocytes dans ce processus, j'ai ensuite mis au point un modèle animal doublement transgénique qui exprime le TNFR1 uniquement dans les astrocytes. Ce dernier m'a permis de prouver que l'activation des récepteurs TNFR1 astrocytaires est suffisante pour induire une augmentation de l'activité synaptique de manière durable.Nous avons donc découvert que le TNFa possède un double rôle, à la fois un rôle permissif et actif, dans le contrôle de la gliotransmission et, par conséquent, dans la modulation de l'activité synaptique. Cette découverte peut potentiellement être d'une extrême importance pour la compréhension des mécanismes physiologiques et pathologiques associés à la production du TNFa, en particulier lors de conditions inflammatoires.RÉSUMÉ GRAND PUBLICLes astrocytes représentent la population la plus nombreuse de cellules dans le cerveau humain. On sait, néanmoins, très peu de choses sur leurs fonctions. Pendant très longtemps, les astrocytes ont uniquement été considérés comme la colle du cerveau, un substrat inerte permettant seulement de lier les cellules neuronales entre elles. Il n'y a que depuis peu que l'on a découvert de nouvelles implications de ces cellules dans le fonctionnement cérébral, comme, entre autres, une fonction de support métabolique de l'activité neuronale et un rôle dans la modulation de la neurotransmission. C'est ce dernier aspect qui fait l'objet de mon projet de thèse.Nous avons découvert que l'activité des synapses (régions qui permettent la communication d'un neurone à un autre) qui peut être potentialisée par la libération du glutamate par les astrocytes, ne peut l'être que dans des conditions astrocytaires très particulières. Nous avons, en particulier, identifié une molécule, le facteur de nécrose tumorale alpha (TNFa) qui joue un rôle critique dans cette libération de glutamate astrocytaire.Le TNFa est surtout connu pour son rôle dans le système immunitaire et le fait qu'il est massivement libéré lors de processus inflammatoires. Nous avons découvert qu'en concentration minime, correspondant à sa concentration basale, le TNFa peut néanmoins exercer un rôle indispensable en permettant la communication entre l'astrocyte et le neurone. Ce mode de fonctionnement est assez probablement représentatif d'un processus physiologique qui permet d'intégrer la communication astrocyte/neurone au fonctionnement général du cerveau. Par ailleurs, nous avons également démontré qu'en quantité plus importante, le TNFa change son mode de fonctionnement et agit comme un stimulateur direct de la libération de glutamate par l'astrocyte et induit une activation persistante de l'activité synaptique. Ce mode de fonctionnement est assez probablement représentatif d'un processus pathologique.Nous sommes également arrivés à ces conclusions grâce à la mise en place d'une nouvelle souche de souris doublement transgéniques dans lesquelles seuls les astrocytes (etnon les neurones ou les autres cellules cérébrales) sont capables d'être activés par le TNFa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although hemoglobin (Hb) is mainly present in the cytoplasm of erythrocytes (red blood cells), lower concentrations of pure, cell-free Hb are released permanently into the circulation due to an inherent intravascular hemolytic disruption of erythrocytes. Previously it was shown that the interaction of Hb with bacterial endotoxins (lipopolysaccharides, LPS) results in a significant increase of the biological activity of LPS. There is clear evidence that the enhancement of the biological activity of LPS by Hb is connected with a disaggregation of LPS. From these findings one questions whether the property to enhance the biological activity of endotoxin, in most cases proven by the ability to increase the cytokine (tumor-necrosis-factor-alpha, interleukins) production in human mononuclear cells, is restricted to bacterial endotoxin or is a more general principle in nature. To elucidate this question, we investigated the interaction of various synthetic and natural virulence (pathogenicity) factors with hemoglobin of human or sheep origin. In addition to enterobacterial R-type LPS a synthetic bacterial lipopeptide and synthetic phospholipid-like structures mimicking the lipid A portion of LPS were analysed. Furthermore, we also tested endotoxically inactive LPS and lipid A compounds such as those from Chlamydia trachomatis. We found that the observations made for endotoxically active form of LPS can be generalized for the other synthetic and natural virulence factors: In every case, the cytokine-production induced by them is increased by the addition of Hb. This biological property of Hb is connected with its physical property to convert the aggregate structures of the virulence factors into one with cubic symmetry, accompanied with a considerable reduction of the size and number of the original aggregates.