999 resultados para tubo metálico
Resumo:
The present study examines the chemical composition and their effects on free radicals, inflammation, angiogenesis, coagulation, VEGF effects and cellular proliferation of a polysaccharides from alga Sargassum vulgare. The sulfated polysaccharide was extracted from brown seaweed by proteolysis with enzymes maxataze. The presence of proteins and sugars were observed in crude polysaccharides. Fractionation of this crude extract was made with growing concentration of acetone (0.3-1.5 v) and produced four groups of polysaccharides. Anionic polysaccharides from brown seaweed Sargassum vulgare, SV1and PSV1 were fractionated (SV1) and purified (PSV1), and displayed with high total sugars and sulfate content and very low level of protein. This fucan SV1 contains low levels of protein and high carbohydrate and sulfate content. This polysaccharides prolonged activated partial thromboplastin time (aPTT) at 50 μg (>240 s). SV1 was found to have no effect on prothrombin time (PT), corresponding to the extrinsic pathway of coagulation. SV1 exhibits high antithrombotic action in vivo, with a concentration ten times higher than heparin. Polysaccharides from S. vulgare promoted direct inhibition enzymatic activity of thrombin and stimulated enzymatic activity of FXa. SV1 showed optimal inhibitory activity of thrombin (50.2±0.28%) at a concentration of 25 μg/mL. Its antioxidant action on scavenging radicals by DPPH was (22%), indicating the polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups and displays strong anti-inflammatory action on all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. Angiogenesis is a dynamic process of proliferation and differentiation. It requires endothelial proliferation, migration, and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by inhibition tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in Apoptosis assay (Annexin V - FITC / PI) and cell viability by MTT assay of RAEC. These polysaccharides do not affect the viability and do not have apoptotic or necrotic action. RAEC cell when incubated with SV1 and PSV1showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h, was more effective for PSV1 at 50 μg/μL(71.4%) than SV1 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumoral actions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time
Resumo:
The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.
Resumo:
The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection
Resumo:
Pipelines for the transport of crude oil from the production wells to the collecting stations are named production lines . These pipes are subjected to chemical and electrochemical corrosion according to the environment and the type of petroleum transported. Some of these lines, depending upon the composition of the fluid produced, may leak within less than one year of operation due to internal corrosion. This work aims at the development of composite pipes with an external protecting layer of high density polyurethane for use in production lines of onshore oil wells, meeting operational requirements. The pipes were manufactured using glass fibers, epoxy resin, polyester resin, quartz sand and high density polyurethane. The pipes were produced by filament winding with the deposition of high density polyurethane on the external surface and threaded ends (API 15 HR/PM-VII). Three types of pipes were manufactured: glass/epoxy, glass/epoxy with an external polyurethane layer and glass/epoxy with an intermediate layer of glass fiber, polyester, sand and with an external polyurethane layer. The three samples were characterized by Scanning Electronic Microscopy (SEM) and for the determination of constituent content. In addition, the following tests were conducted: hydrostatic test, instant rupture, shorttime failure pressure, Gardner impact, transverse stiffness and axial tension. Field tests were conducted in Mossoró RN (BRAZIL), where 1,677 meters of piping were used. The tests results of the three types of pipes were compared in two events: after two months from manufacturing of the samples and after nine months of field application. The results indicate that the glass/epoxy pipes with an intermediate layer of fiber glass composite, polyester e sand and with an external layer of high density polyurethane showed superior properties as compared to the other two and met the requirements of pressure class, axial tensile strength, transverse stiffness, impact and environmental conditions, for onshore applications as production lines
Resumo:
The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation
Resumo:
Thin commercial aluminum electrolytic and passed through reactions was obtained with anodic alumina membranes nanopores. These materials have applications in areas recognized electronic, biomedical, chemical and biological weapons, especially in obtaining nanostructures using these membranes as a substrate or template for processing nanowires, nanodots and nanofibers for applications noble. Previous studies showed that the membranes that have undergone heat treatment temperature to 1300° C underwent changes in morphology, crystal structure and optical properties. This aim, this thesis, a study of the heat treatment of porous anodic alumina membranes, in order to obtain and to characterize the behavior changes structures during the crystallization process of the membranes, at temperatures ranging between 300 and 1700° C. It was therefore necessary to mount a system formed by a tubular furnace resistive alumina tube and controlled environment, applying flux with special blend of Ag-87% and 13% N2, in which argon had the role of carrying out the oxygen nitrogen system and induce the closing of the pores during the densification of the membrane. The duration of heat treatment ranged from 60 to 15 minutes, at temperatures from 300 to 1700° C respectively. With the heat treatment occurred: a drastic reduction of porosity, grain growth and increased translucency of the membrane. For the characterization of the membranes were analyzed properties: Physical - thermogravimetric, X-ray diffraction, BET surface area; morphological - SEM, EDS through compositional and, optical absorbance, and transmittance in the UV-VIS, and FTIR. The results using the SEM showed that crystallization has occurred, densification and significant changes in membrane structure, as well as obtaining microtube, the BET analysis showed a decrease in specific surface area of the membranes has to 44.381 m2.g-1 to less than 1.8 m2.g-1 and in the analysis of transmittance and absorbance was found a value of 16.5% in the range of 800 nm, characteristic of the near infrared and FTIR have confirmed the molecular groups of the material. Thus, one can say that the membranes were mixed characteristics and properties which qualify for use in gas filtration system, as well as applications in the range of optical wavelength of the infra-red, and as a substrate of nanomaterials. This requires the continuation and deepening of additional study
Resumo:
Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection
Resumo:
In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
Efforts in research and development of new technologies to reduce emission levels of pollutant gases in the atmosphere has intensified in the last decades. In this context, it can be highlighted the modern systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contributes to reduce the environmental impact. The purpose of this study was a comparative analysis of gas emissions from a automotive vehicle, operating with different fuels: natural gas, AEHC or gasoline. To execute the experimental tests, a flex vehicle was installed on a chassis dynamometer equipped with a gas analyzer and other complementary accessories according to the standard guidelines of emission and security procedures. Tests were performed according to NBR 6601 and NBR 7024, which define the urban and road driving cycle, respectively. Besides the analysis of exhaust gases in the discharge tube, before and after the catalyst, using the suction probe of the gas analyzer to simulate the vehicle in urban and road traffic, were performed tests of fuel characterization. Final results were conclusive in indicating leaded gasoline as the fuel which most contributed with pollutant emissions in atmosphere and the usual gasoline being the fuel which less contributed with pollutant emissions in atmosphere
Resumo:
In this work, biodiesel was produced from castor oil that was a byproduct glycerin. The molar ratio between oil and alcohol, as well as the use of (KOH) catalyst to provide the chemical reaction is based on literature. The best results were obtained using 1 mol of castor oil (260g) to 3 moles of methyl alcohol (138g), using 1.0% KOH as catalyst at a temperature of 260 ° C and shaken at 120 rpm. The oil used was commercially available, the process involves the reaction of transesterification of a vegetable oil with methyl alcohol. The product of this reaction is an ester, biodiesel being the main product and the glycerin by-product which has undergone treatment for use as raw material for the production of allyl alcohol. The great advantage of the use of glycerin to obtain allyl alcohol is that its use eliminates the large amount of waste of the biodiesel and various forms of insult to the environment. The reactions for the formation of allyl alcohol was conducted from formic acid and glycerin in a ratio 1/1, at a temperature of 260oC in a heater blanket, being sprayed by a spiral condenser for a period of 2 hours and the product obtained contains mostly the allylic alcohol .. The monitoring of reactions was performed by UV-Visible Spectrophotometer: FTIR Fourier transform, the analysis showed that these changes occur spectrometer indicating the formation of the product allylic alcohol (prop-2-en-1-ol) in the presence of water, This alcohol was appointed Alcohol GL. The absorption bands confirms that the reaction was observed in (υ C = C) 1470 -1600 cm -1 and (υ CO), 3610-3670 attributed to C = C groups and OH respectively. The thermal analysis was carried out in a thermogravimetric analyzer SDT Q600, where the mass and temperature are displayed against time, that allows checking the approximate rate of heating. The innovative methodology developed in the laboratory (LABTAM, UFRN), was able to treat the glycerine produced by transesterification of castor oil and used as raw material for production of allyl alcohol, with a yield of 80%, of alcohol, the same is of great importance in the manufacture of polymers, pharmaceuticals, organic compounds, herbicides, pesticides and other chemicals
Resumo:
The composition of ichthyofauna discarded by trawling shrimping, their reproductive status and feeding ecology were studied on the beaches of Basin Rio Grande do Norte, Brazil. Fish were collected monthly in the year of 2012. During biometrics, portions of the digestive tract and of gonads were removed, fixed in formalin 10% and Bouin, respectively, for be submitted to histological processing by the techniques of hematoxylin-eosin. Stomach content analyzes were performed using the methods of Frequency of Occurrence and Volumetric and was calculated the repletion index. Throughout the study period were recorded a total of 49 species. The fish assemblages differed between sections monitoring, with the highest abundance, biomass and indices of richness and diversity in sections B, D and C. Already the excerpt A, showed higher values for dominance and equitability. In the cluster analysis according to the faunal similarity was observed the formation of three groups: group I formed by excerpts B and D, group II by excerpt C and group III formed by excerpt A. The assessment of reproductive stage revealed that the fish assemblages discarded by trawling are composed mainly of juveniles. Regarding the feeding ecology, the species Larimus breviceps, Menticirrhus littoralis and Pomadasys corvinaeformis characterized as carnivorous with tendency to carcinofagia. Already Conodon nobilis characterized as carnivorous with tendency to piscivory, but all proved generalist-opportunistic with increase of feeding activity during drought. The dendrogram of grouping of the species developed based on the food items used shows the formation of four groups: Group I consists of species that feed mainly of "gastropod" and "sediment"; group II of "teleost fish"; the group III of "crustacea" and group IV of "echinodermata" and "bivalve". The anatomical and histological characteristics of the digestive tract were consistent with the dietary habits of the analyzed species. In this context, the Costa Branca of Rio Grande do Norte can be considered a feeding site and recruitment for juveniles, which, opportunistically, utilize resources associated with the background
Resumo:
This work was divided in two experiments, the first one to evaluate the lettuce productivity (cv Lucy Brown - American group) influenced by increasing and decreasing periods of coexisting with harmful plants, and a second moment, aiming at to evaluate the allelopathic potential of nutsedge (Cyperus rotundus L.) on the initial lettuce development.The experimental treatments constituted of six increasing and decreasing periods of coexisting with harmful plants, or control of it in the culture, considered from the plantation of the lettuce; being separate in two groups: Weeds and Clean weeds.In the second moment of the experiment, purple nutsedge aerial parts had been collected in the area of experiment 1, that drying had been after triturated and immersed in methylic alcohol P. A in ratios 10, 5,0 and 2.5% (w/ v) and later impregnated in germination paper, where had been placed lettuce seeds.The analyses of results, one concludes that the presence of C. rotundus plants can intervene with the germination, growth and development of the plants of lettuce cv Lucy Brown, and that initial periods of coexisting between the culture and the harmful are associate to an induction of the foliar area development, and can not express the reduction of productivity in the end of the cycle. Drawn out periods of competition induce the reduction of the lettuce foliar area, and then they will intervene with the yield productivity.