976 resultados para transient left ventricular dilation
Resumo:
Echocardiographic analysis of regional left ventricular function is based upon the assessment of radial motion. Long-axis motion is an important contributor to overall function. but has been difficult to evaluate clinically until the recent development of tissue Doppler techniques. We sought to compare the standard visual assessment of radial motion with quantitative tissue Doppler measurement of peak systolic velocity. timing and strain rate (SRI) in 104 patients with known or suspected coronary artery disease undergoing dobutamine stress echocardiography (DbE). A standard DbE protocol was used with colour tissue Doppler images acquired in digital cine-loop format. peak systolic velocity (PSV), time to peak velocity (TPV) and SRI were assessed off-line by an independent operator. Wall motion was assessed by an experienced reader. Mean PSV, TPV and SRI values were compared with wall motion and the presence of coronary artery disease by angiography. A further analysis included assessing the extent of jeopardized myocardium by comparing average values of PSV, TPV and SRI against the previously validated angiographic score. Segments identified as having normal and abnormal radial wall motion showed significant differences in mean PSV (7.9 +/- 3.8 and 5.9 +/- 3.3 cm/s respectively; P < 0.001), TPV (84 40 and 95 +/- 48 ms respectively; P = 0.005) and SRI (- 1.45 +/- 0.5 and - 1.1 +/- 0.9 s(-1) respectively; P < 0.001). The presence of a stenosed subtending coronary artery was also associated with significant differences from normally perfused segments for mean PSV (8.1 3.4 compared with 5.7 +/- 3.7 cm/s; P < 0.001), TPV (78 50 compared with 92 +/- 45 ms; P < 0.001) and SRI (- 1.35 0.5 compared with - 1.20 +/- 0.4 s(-1); P = 0.05). PSV, TPV and SRI also varied significantly according to the extent of jeopardized myocardium within a vascular territory. These results suggest that peak systolic velocity, timing of contraction and SRI reflect the underlying physiological characteristics of the regional myocardium during DbE, and may potentially allow objective analysis of wall motion.
Resumo:
OBJECTIVES We sought to find out whether dobutamine echocardiography (DbE) could provide independent prediction of total and cardiac mortality, incremental to clinical and angiographic variables. BACKGROUND Existing outcome studies with DbE have examined composite end points, rather than death, over a relatively short follow-up. METHODS Clinical and stress data were collected in 3,156 patients (age 63 +/- 12 years, 1,801 men) undergoing DbE. Significant stenoses (>50% diameter) were identified in 70% of 1,073 patients undergoing coronary angiography. Total and cardiac mortality were identified over nine years of follow-up (mean 3.8 +/- 1.9). Cox models were used to analyze the effect of ischemia and other variables, independent of other determinants of mortality. RESULTS The dobutamine echocardiogram was abnormal in 1,575 patients (50%). Death occurred in 716 patients (23%), 259 of whom (8%) were thought to have died from cardiac causes. Patients with normal DbE had a total mortality of 8% per year and a cardiac mortality of 1% per year over the first four years of follow-up. Ischemia and the extent of abnormal wall motion were independent predictors of cardiac death, together with age and heart failure. In sequential Cox models, the predictive power of clinical data alone (model chi-square 115) was strengthened by adding the resting left ventricular function (model chi-square 138) and the results of DbE (model chi-square 181). In the subgroup undergoing coronary angiography, the power of the model was increased to a minor degree by the addition of coronary anatomy data. CONCLUSIONS Dobutamine echocardiography is an independent predictor of death, incremental to other data. While a normal dobutamine echocardiogram predicts low risk of cardiac death ton the order of 1% per year), this risk increases with the extent of abnormal wall motion at rest and stress, (J Am Coil Cardiol 2001;37:754-60) (C) 2001 by the American College of Cardiology.
Resumo:
Until recently, spironolactone was considered only as an antagonist at the aldosterone receptors of the epithelial cells of the kidney and was used clinically in the treatment of hyperaldosteronism and, occasionally, as a K+-sparing diuretic. The spironolactone renaissance started with the experimental finding that spironolactone reversed aldosterone-induced cardiac fibrosis by a cardiac action. Experimentally, spironolactone also has direct effects on blood vessels. Spironolactone reduces vascular fibrosis and injury, inhibits angiogenesis, reduces vascular tone and reduces portal hypertension. The rationale for the Randomized Aldactone Evaluation Study (RALES) of spironolactone in heart failure was that ‘aldosterone escape’ occurred through non-angiotensin II mechanisms. The RALES clinical trial was stopped early when it was shown that there was a 30% reduction in risk of death among the spironolactone patients. In RALES, spironolactone also reduced hospitalisation for worsening heart failure and improved the symptoms of heart failure. Other recent clinical trials have shown that spironolactone reduces cardiac and vascular collagen turnover, improves heart variability, reduces ventricular arrhythmias, improves endothelial dysfunction and dilates blood vessels in human heart failure and these effects probably all contribute to the increased survival in heart failure. Spironolactone may also be useful in the treatment of left ventricular hypertrophy, portal hypertension and cirrhosis. There have also been some recent small clinical trials of spironolactone as an anti-androgen showing potential in acne, hirsutism and precocious puberty.
Resumo:
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can e reversed by administration of the selective angiotensin II AT(1)-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110 +/- 4 mmHg (control) to 170 +/- 10 mmHg. Rats developed left ventricular hypertrophy (control 1.70 +/- 0.06; L-NAME 2.10 +/- 0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echo cardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56 +/- 0.14); maximal increase in force before ectopic beats was reduced from 5.0 +/- 0.4 mN to 2.0 +/- 0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2 +/- 2.0 mN to 3.0 +/- 0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT(1)-receptors in L-NAME-induced cardiovascular changes.
Resumo:
1 Fibrosis leads to chronic impairment of cardiac and renal function and thus reversal of existing fibrosis may improve function and survival. This project has determined whether pirfenidone, a new antifibrotic compound, and spironolactone, an aldosterone antagonist, reverse both deposition of the major extracellular matrix proteins, collagen and fibronectin, and functional changes in the streptozotocin(STZ)-diabetic rat. 2 Streptozotocin (65 mg kg(-1) i.v.)-treated rats given pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; approximately-200 mg kg(-1) day(-1) as 0.2-2g l(-1) drinking water) or spironolactone (50 mg kg(-1) day(-1) s.c.) for 4 weeks starting 4 weeks after STZ showed no attenuation of the increased blood glucose concentrations and increased food and water intakes which characterize diabetes in this model. 3 STZ-treatment increased perivascular and interstitial collagen deposition in the left ventricle and kidney, and surrounding the aorta. Cardiac, renal and plasma fibronectin concentrations increased in STZ-diabetic rats. Passive diastolic stiffness increased in isolated hearts from STZ-diabetic rats. Both pirfenidone and spironolactone treatment attenuated these increases without normalizing the decreased + dP/dt(max) of STZ-diabetic hearts. 4 Left ventricular papillary muscles from STZ-treated rats showed decreased maximal positive inotropic responses to noradrenaline, EMD 57033 (calcium sensitizer) and calcium chloride; this was not reversed by pirfenidone or spironolactone treatment. STZ-treatment transiently decreased GFR and urine flow rates in isolated perfused kidneys; pirfenidone but not spironolactone prevented the return to control values. 5 Thus, short-term pirfenidone and spironolactone treatment reversed cardiac and renal fibrosis and attenuated the increased diastolic stiffness without normalizing cardiac contractility or renal function in STZ-diabetic rats.
Resumo:
Brain natriuretic peptide (BNP) is predominantly a cardiac ventricular hormone that promotes natriuresis and diuresis, inhibits the renin-anglotensin-aldosterone axis, and is a vasodilator. Plasma BNP levels are raised in essential hypertension, and more so in left ventricular (LV) hypertrophy and heart failure. Plasma BNP levels are also elevated in ischemic heart disease. Attempts have been made to use plasma BNP levels as a marker of LV dysfunction, but these have shown that plasma BNP levels are probably not sensitive enough to replace echocardiography in the diagnosis of LV dysfunction. Pericardial BNP or N-BNP may be more suitable markers of LV dysfunction. Plasma BNP levels are also elevated in right ventricular dysfunction, pregnancy-induced hypertension, aortic stenosis, age, subarachnoid hemorrhage, cardiac allograft rejection and cavopulmonary connection, and BNP may have an important pathophysiological role in some or all of these conditions. Clinical trials have demonstrated the natriuretic, diuretic and vasodilator effects, as well as inhibitory effects on renin and aldosterone of infused synthetic human BNP (nesiritide) in healthy humans. BNP infusion improves LV function in patients with congestive heart failure via a vasodilating and a prominent natriuretic effect. BNP infusion is useful for the treatment of decompensated congestive heart failure requiring hospitalization. The clinical potential of BNP is limited as it is a peptide and requires infusion. Drugs that modify the effects of BNP are furthering our understanding of the pathophysiological role and clinical potential of BNP. Increasing the effects of BNP may be a useful therapeutic approach in heart failure involving LV dysfunction. The levels of plasma BNP are increased by blockers, cardiac glycosides and vasopeptidase inhibitors, and this may contribute to the usefulness of these agents in heart failure. (C) 2001 Prous Science. All rights reserved.
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
Background: Tissue Doppler may be used to quantify regional left ventricular function but is limited by segmental variation of longitudinal velocity from base to apex and free to septal walls. We sought to overcome this by developing a composite of longitudinal and radial velocities. Methods and Results. We examined 82 unselected patients undergoing a standard dobutamine echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of each wall using tissue Doppler in the apical views. Radial velocities were derived in the same segments using an automated border detection system and centerline method with regional chords grouped according to segment location and temporally averaged. In 25 patients at low probability of coronary disease, the pattern of regional variation in longitudinal velocity (higher in the septum) was the opposite of radial velocity (higher in the free wall) and the combination was homogenous. In 57 patients undergoing angiography, velocity in abnormal segments was less than normal segments using longitudinal (6.0 +/- 3.6 vs 9.0 +/- 2.2 cm/s, P = .01) and radial velocity (6.0 +/- 4.0 vs 8.0 +/- 3.9 cm/s, P = .02). However, the composite velocity permitted better separation of abnormal and normal segments (13.3 +/- 5.6 vs 17.5 +/- 4.2 cm/s, P = .001). There was no significant difference between the accuracy of this quantitative approach and expert visual wall motion analysis (81% vs 84%, P = .56). Conclusion: Regional variation of uni-dimensional myocardial velocities necessitates site-specific normal ranges, probably because of different fiber directions. Combined analysis of longitudinal and radial velocities allows the derivation of a composite velocity, which is homogenous in all segments and may allow better separation of normal and abnormal myocardium.
Resumo:
OBJECTIVE - This study sought to determine whether stress echocardiography using exercise (when feasible) or dobutamine echo could be used to predict mortality in patients with diabetes. RESEARCH DESIGN AND METHODS - Stress echo was performed in 937 patients with diabetes (aged 59 +/- 13 years, 529 men) for symptom evaluation (42%) and follow-up of known coronary artery disease (CAD) (58%). Stress echocardiography using exercise was performed in 333 patients able to exercise maximally, and dobutamine echo using a standard dobutamine stress was used in 604 patients. Patients were followed for less than or equal to9 years (mean 3.9 +/- 2.3) for all-cause mortality. RESULTS - Normal studies were obtained in 567 (60%) patients; 29% had resting left ventricular (LV) dysfunction, and 25% had ischemia. Abnormalities were confined to one territory in 183 (20%) patients and to multiple territories in 187 (20%) patients. Death (in 275 [29%] patients) was predicted by referral for pharmacologic stress (hazard ratio [HR] 3.94, P < 0.0001), ischemia (1.77, P <0.0001), age (1.02, P = 0.002), and heart failure (1.54, P = 0.01). The risk of death in patients With a normal scan was 4% per year, and this was associated with age and selection for pharmacologic stress testing. In stepwise models replicating the sequence of clinical evaluation, the predictive power of independent clinical predictors (age, selection for pharmacologic stress, previous infarction, and heart failure; model chi(2) = 104.8) was significantly enhanced by addition of stress echo data (model chi(2) = 122.9). CONCLUSIONS - The results of stress echo are independent predictors of death in diabetic patients with known or suspected CAD.. Ischemia adds risk that is incremental to clinical risks and LV dysfunction.
Resumo:
Stress echocardiography has been shown to improve the diagnosis of coronary artery disease in the presence of hypertension, but its value in prognostic evaluation is unclear. We sought to determine whether stress echocardiography could be used to predict mortality in 2363 patients with hypertension, who were followed for up to 10 years (mean 4.0+/-1.8) for death and revascularization. Stress echocardiograms were normal in 1483 patients (63%), 16% had resting left ventricular (LV) dysfunction alone, and 21% had ischemia. Abnormalities were confined to one territory in 489 patients (21%) and to multiple territories in 365 patients (15%). Cardiac death was less frequent among the patients able to exercise than among those undergoing dobutamine echocardiography (4% versus 7%, P<0.001). The risk of death in patients with a negative stress echocardiogram was <1% per year. Ischemia identified by stress echocardiography was an independent predictor of mortality in those able to exercise (hazard ratio 2.21, 95% confidence intervals 1.10 to 4.43, P=0.0001) as well as those undergoing dobutamine echo (hazard ratio 2.39, 95% confidence intervals 1.53 to 3.75, P=0.0001); other predictors were age, heart failure, resting LV dysfunction, and the Duke treadmill score. In stepwise models replicating the sequence of clinical evaluation, the results of stress echocardiography added prognostic power to models based on clinical and stress-testing variables. Thus, the results of stress echocardiography are an independent predictor of cardiac death in hypertensive patients with known or suspected coronary artery disease, incremental to clinical risks and exercise results.
Resumo:
Quantification of stress echocardiography may overcome the training requirements and subjective nature of visual wall motion score (WMS) assessment, but quantitative approaches may be difficult to apply and require significant time for image processing. The integral of long-axis myocardial velocity is displacement, which may be represented as a color map over the left ventricular myocardium. This study was designed to explore the feasibility and accuracy of measuring long-axis myocardial displacement, derived from tissue Doppler, for the detection of coronary artery disease (CAD) during dobutamine stress echocardiography (DBE). One hundred thirty patients underwent standard DBE, including 30 patients at low risk of CAD, 30 patients with normal coronary angiography (both groups studied to define normal ranges of displacement), and 70 patients who underwent coronary angiography in whom the accuracy of normal ranges was tested. Regional myocardial displacement was obtained by analysis of color tissue Doppler apical images acquired at peak stress. Displacement was compared with WMS, and with the presence of CAD by angiography. The analysis time was 3.2 +/- 1.5 minutes per patient. Segmental displacement was correlated with wall motion (normal 7.4 +/- 3.2 mm, ischemia 5.8 +/- 4.2 mm, viability 4.6 +/- 3.0 mm, scar 4.5 +/- 3.5 mm, p <0.001). Reversal of normal base-apex displacement was an insensitive (19%) but specific (90%) marker of CAD. The sum of displacements within each vascular territory had a sensitivity and specificity of 89% and 79%, respectively, for prediction of significant CAD, compared with 86% and 78%, respectively, for WMS (p = NS). The displacements in the basal segments had a sensitivity and specificity of 83% and 78%, respectively (p = NS). Regional myocardial displacement during DBE is feasible and offers a fast and accurate method for the diagnosis of CAD. (C),2002 by Excerpta Medica, Inc.
Resumo:
Aims To determine the degree of inter-institutional agreement in the assessment of dobutamine stress echocardiograms using modern stress echo cardiographic technology in combination with standardized data acquisition and assessment criteria. Method and Results Among six experienced institutions, 150 dobutamine stress echocardiograms (dobutamine up to 40 mug.kg(-1) min(-1) and atropine up to I mg) were performed on patients with suspected coronary artery disease using fundamental and harmonic imaging following a consistent digital acquisition protocol. Each dobutamine stress echocardiogram was assessed at every institution regarding endocardial visibility and left ventricular wall motion without knowledge of any other data using standardized reading criteria. No patients were excluded due to poor image quality or inadequate stress level. Coronary angiography was performed within 4 weeks. Coronary angiography demonstrated significant coronary artery disease (less than or equal to50% diameter stenosis) in 87 patients. Using harmonic imaging an average of 5.2+/-0.9 institutions agreed on dobutamine stress echocardiogram results as being normal or abnormal (mean kappa 0.55; 95% CI 0.50-0.60). Agreement was higher in patients with no (equal assessment of dobutamine stress echocardiogram results by 5.5 +/- 0.8 institutions) or three-vessel coronary artery disease (5.4 +/- 0.8 institutions) and lower in one- or two- vessel disease (5.0 +/- 0.9 and 5.2 +/- 1.0 institutions, respectively-, P=0.041). Disagreement on test results was greater in only minor wall motion abnormalities. Agreement on dobutamine stress echocardiogram results was lower using fundamental imaging (mean kappa 0.49; 95% CI 0.44-0.54; P
Resumo:
The aim was to test whether dofetilide has some potential for use in the treatment of heart failure. Dofetilide at less than or equal to 3 x 10(-5) m had no effect on the quiescent Wistar Kyoto (WKY) rat aorta, mesenteric and intralobar arteries, or the spontaneous contractions of the WKY rat portal vein. Dofetilide at 10(-6) to 3 x 10(-5) m relaxed the KCl-contracted aorta. Dofetilide at 10(-9)-10(-7) m augmented the force of contraction of left ventricle strips from 12- and 18-month-old WKY rats at 2 Hz. Spontaneously hypertensive rats (SHRs) at 12 and 17-21 months of age are models of cardiac hypertrophy and failure, respectively. The augmentation of force at 2 Hz with dofetilide was similar on 12- and 18-month-old WKY rats and 12-month-old SHRs but reduced on the 18-month-old SHR left ventricle. At a higher more physiological frequency, 4 Hz, the threshold concentration of dofetilide required to augment the force responses of 21-month-old SHR left ventricles was markedly increased and the maximum augmenting effect was decreased. Dofetilide at 10(-7)-10(-5) m reduced the rate of the 17-month-old WKY rat right atrium, and had a similar effect on age-matched SHR right atrium. In summary, dofetilide is a positive inotrope and negative chronotrope in the rat. However, as the positive inotropic effect is not observed with clinically relevant concentrations at a physiological rate in heart failure, dofetilide is unlikely to be useful as a positive inotrope in the treatment of heart failure.
Resumo:
Both angiotensin-converting enzyme (ACE) inhibitors and AT-1 receptor antagonists reduce the effects of angiotensin II, however they may have different clinical effects. This is because the ACE inhibitors, but not the AT-1 receptor antagonists, increase the levels of substance P, bradykinin and tissue plasminogen activator. The AT-1 receptor antagonists, but not the ACE inhibitors, are capable of inhibiting the effects of angiotensin II produced by enzymes other than ACE. On the basis of the present clinical trial evidence, AT-1 receptor antagonists, rather than the ACE inhibitors, should be used to treat hypertension associated with left ventricular (LV) hypertrophy. Both groups of drugs are useful when hypertension is not complicated by LV hypertrophy, and in diabetes. In the treatment of diabetes with or without hypertension, there is good clinical support for the use of either an ACE inhibitor or an AT-1 receptor antagonist. ACE inhibitors are recommended in the treatment of renal disease that is not associated with diabetes, after myocardial infarction when left ventricular dysfunction is present, and in heart failure. As the incidence of cough is much lower with the AT-1 receptor antagonists, these can be substituted for ACE inhibitors in patients with hypertension or heart failure who have persistent cough. Preliminary studies suggest that combining an AT-1 receptor antagonist with an ACE inhibitor may be more effective than an ACE inhibitor alone in the treatment of hypertension, diabetes with hypertension, renal disease without diabetes and heart failure. However, further trials are required before combination therapy can be recommended in these conditions.
Resumo:
Background: Congestive heart failure (CHF) is an increasingly prevalent poor-prognosis condition for which effective interventions are available. It is -therefore important to determine the extent to which patients with CHF receive appropriate care in Australian hospitals and identify ways for improving suboptimal care, if it exists. Aim: To evaluate the quality of in-hospital acute care of patients with CHF using explicit quality indicators based on published guidelines. Methods: A retrospective case note review was -performed, involving 216 patients admitted to three teaching hospitals in Brisbane, Queensland, Australia, between October 2000 and April 2001. Outcome measures were process-of-care quality -indicators calculated as proportions of all, or strongly -eligible (ideal), patients who received -specific interventions. Results: Assessment of underlying causes and acute precipitating factors was undertaken in 86% and 76% of patients, respectively, and objective evaluation of left ventricular function was performed in 62% of patients. Prophylaxis for deep venous thrombosis (DVT) was used in only 29% of ideal patients. Proportions of ideal patients receiving pharmacological treatments at discharge were: (i) angiotensin--converting enzyme inhibitors (ACEi) (82%), (ii) target doses of ACEi (61%), (iii) alternative vasodilators in patients ineligible for ACEi (20%), (iv) beta-blockers (40%) and (v) warfarin (46%). Conclusions: Opportunities exist for improving quality of in-hospital care of patients with CHF, -particularly for optimal prescribing of: (i) DVT prophylaxis, (ii) ACEi, (iii) second-line vasodilators, (iv) beta-blockers and (v) warfarin. More research is needed to identify methods for improving quality of in-hospital care.