939 resultados para thiol derivative
Resumo:
This publication is the first in a series of scholarly reports on research-based practice related to the First Year Experience in Higher Education. This report synthesises evidence about practice-based initiatives and pragmatic approaches in Aotearoa (New Zealand) and Australia that aim to enhance the experience of commencing students in the higher education sector. Trends in policies, programs and practices ... examines the first year experience literature from 2000-2010. It acknowledges the uniqueness of the Australasian socio-political context and its influence on the interests and output of researchers. The review surveyed almost 400 empirical reports and conceptual discussions produced over the decade that dealt with the stakeholders, institutions and the higher education sector in Australasia. The literature is examined through two theoretical constructs or “lenses”: first, a set of first year curriculum design principles and second, the generational approach to describing the maturation of initiatives. These outcomes and suggested directions for further research provide the challenges and the opportunities for FYE adherents, both scholars and practitioners, to grapple with in the next decade.
Using cost-effective multimedia to create engaging learning experiences in law and other disciplines
Resumo:
This is the final report of an Australian Learning and Teaching Council Teaching Fellowship which addressed the needs of two separate groups of learners: (1) final year law students studying ethics and (2) law academics and other interested educators in higher education wishing to use information and communication technologies (ICT) to create engaging learning environments for their students but lacking the capacity to do so. The Fellowship resulted in final year law students being infused with an improved appreciation of ethical practice than they receive from traditional lecture/tutorial means by the development of an integrated program of blended learning including an online program entitled "Entry into Valhalla". This "ethics capstone‟ utilises multimedia produced using cost effective resources (including the "Second Life" virtual environment) to create engaging, contextualised learning experiences. The Fellowship also constructed the knowledge of producing cost-effective multimedia projects in other law academics and other educators in higher education by staff development activities comprising workshops, conference presentations and an interactive website using the "Entry into Valhalla" program as a case study exemplar.
Resumo:
Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.
Resumo:
In the late twentieth and early twenty-first centuries, Australia’s relationship with its Asian neighbours has been the subject of ongoing aesthetic, cultural and political contestations. As Alison Richards has noted, Australia’s colonial legacy, its Asia-Pacific location, and its ‘white’ self-perception have always made Australia’s relations with Asia fraught. In the latter part of the twentieth century, the paradoxes inherent in Australia’s relationships with and within the Asian region became a dominant theme in debates about nation, nationhood and identity, and prompted a shift in the construction of ‘Asianness’ on Australian stages. On the one hand, anxiety about the multicultural policy of the 1970s and 1980s, and then Prime Minister Paul Keating’s push for greater economic, cultural and artistic exchange with Asia via policies such as the Creative Nation Cultural Policy (1994), saw large numbers of Australians latch on to the reactionary, racist politics of Pauline Hanson’s One Nation Party. As Jacqueline Lo has argued, in this period Asian-Australians were frequently represented as an unassimilable Other, a threat to Australia’s ‘white’ identity, and to individual Australians’ jobs and opportunities. On the other hand, during the same period, a desire to counter the racism in Australian culture, and develop a ‘voice’ that would distinguish Australian cultural products from European theatrical traditions, combined with the new opportunities for cross-cultural exchange that came with the Creative Nation Cultural Policy to produce what Helen Gilbert and Jacqueline Lo have characterised as an Asian turn in Australian theatre...
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
This paper presents a nonlinear gust-attenuation controller to stabilize velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in the presence of wind gusts. The proposed controller aims to achieve a steady-state flight condition such that the host UAV can avoid airspace collision with other UAVs during the cruise flight. Based on the typical UAV model capturing flight aerodynamics, a nonlinear Hinf controller is developed with rapid response property in consideration of actuator constraints. Simulations are conducted for the Shadow UAV to verify performance of the proposed controller. Comparative studies with the proportional-integral derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight with safety guarantees.
Resumo:
Silicon substrates coated with a bromide-terminated silane are transformed into highly reactive, cyclopentadiene covered analogues. These surfaces undergo rapid cycloaddition reactions with various dienophile-capped polymers. Mild heating of the substrates causes the retro-Diels-Alder reaction to occur, thus reforming the reactive cyclopentadiene surface, generating an efficiently switchable surface.
Resumo:
Tailor-made water-soluble macromolecules, including a glycopolymer, obtained by living/controlled RAFT-mediated polymerization are demonstrated to react in water with diene-functionalized poly(ethylene glycol)s without pre- or post-functionalization steps or the need for a catalyst at ambient temperature. As previously observed in organic solvents, hetero-Diels-Alder (HDA) conjugations reached quantitative conversion within minutes when cyclopentadienyl moieties were involved. However, while catalysts and elevated temperatures were previously necessary for open-chain diene conjugation, additive-free HDA cycloadditions occur in water within a few hours at ambient temperature. Experimental evidence for efficient conjugations is provided via unambiguous ESI-MS, UV/vis, NMR, and SEC data.
Resumo:
In recent years, it has been found that many phenomena in engineering, physics, chemistry and other sciences can be described very successfully by models using mathematical tools from fractional calculus. Recently, noted a new space and time fractional Bloch-Torrey equation (ST-FBTE) has been proposed (see Magin et al. (2008)), and successfully applied to analyse diffusion images of human brain tissues to provide new insights for further investigations of tissue structures. In this paper, we consider the ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we propose a new effective implicit numerical method (INM) for the STFBTE whereby we discretize the Riesz fractional derivative using a fractional centered difference. Secondly, we prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent, and the order of convergence of the implicit numerical method is ( T2 - α + h2 x + h2 y + h2 z ). Finally, some numerical results are presented to support our theoretical analysis.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
The field of fractional differential equations provides a means for modelling transport processes within complex media which are governed by anomalous transport. Indeed, the application to anomalous transport has been a significant driving force behind the rapid growth and expansion of the literature in the field of fractional calculus. In this paper, we present a finite volume method to solve the time-space two-sided fractional advection dispersion equation on a one-dimensional domain. Such an equation allows modelling different flow regime impacts from either side. The finite volume formulation provides a natural way to handle fractional advection-dispersion equations written in conservative form. The novel spatial discretisation employs fractionally-shifted Gr¨unwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes, while the L1-algorithm is used to discretise the Caputo time fractional derivative. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.