996 resultados para thermal constant
Resumo:
The present study focuses on two effects of the presence of a noncondensable gas on the thermal-hydraulic behavior of thecoolant of the primary circuit of a nuclear reactor in the VVER-440 geometry inabnormal situations. First, steam condensation with the presence of air was studied in the horizontal tubes of the steam generator (SG) of the PACTEL test facility. The French thermal-hydraulic CATHARE code was used to study the heat transfer between the primary and secondary side in conditions derived from preliminary experiments performed by VTT using PACTEL. In natural circulation and single-phase vapor conditions, the injection of a volume of air, equivalent to the totalvolume of the primary side of the SG at the entrance of the hot collector, did not stop the heat transfer from the primary to the secondary side. The calculated results indicate that air is located in the second half-length (from the mid-length of the tubes to the cold collector) in all the tubes of the steam generator The hot collector remained full of steam during the transient. Secondly, the potential release of the nitrogen gas dissolved in the water of the accumulators of the emergency core coolant system of the Loviisa nuclear power plant (NPP) was investigated. The author implemented a model of the dissolution and release ofnitrogen gas in the CATHARE code; the model created by the CATHARE developers. In collaboration with VTT, an analytical experiment was performed with some components of PACTEL to determine, in particular, the value of the release time constant of the nitrogen gas in the depressurization conditions representative of the small and intermediate break transients postulated for the Loviisa NPP. Such transients, with simplified operating procedures, were calculated using the modified CATHARE code for various values of the release time constant used in the dissolution and release model. For the small breaks, nitrogen gas is trapped in thecollectors of the SGs in rather large proportions. There, the levels oscillate until the actuation of the low-pressure injection pumps (LPIS) that refill the primary circuit. In the case of the intermediate breaks, most of the nitrogen gas is expelled at the break and almost no nitrogen gas is trapped in the SGs. In comparison with the cases calculated without taking into account the release of nitrogen gas, the start of the LPIS is delayed by between 1 and 1.75 h. Applicability of the obtained results to the real safety conditions must take into accountthe real operating procedures used in the nuclear power plant.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Differences amongst wheat cultivars in the rate of reproductive development are largely dependent on differences in their sensitivity to photoperiod and vernalization. However, when these responses are accounted for, by growing vernalized seedlings under long photoperiods, cultivars can still differ markedly in time to ear emergence. Control of rate of development by this ‘third factor’ has been poorly understood and is variously referred to as intrinsic earliness, earliness in the narrow sense, basic vegetative period, earliness per se, and basic development rate. Certain assumptions are made in the concept of intrinsic earliness. They are that differences in intrinsic earliness (i) are independent of the responses of the cultivars to photoperiod and vernalization, (ii) apply only to the length of the vegetative period up to floral initiation (as suggested by several authors), (iii) are maintained under different temperatures, measured either in days or degree days. As a consequence of this, the ranking of cultivars (from intrinsically early to intrinsically late) must be maintained at different temperatures. This paper, by the re-analysis of published data, examines the extent to which these assumptions can be supported. Although it is shown that intrinsic earliness operates independently of photoperiod and vernalization responses, the other assumptions were not supported. The differences amongst genotypes in time to ear emergence, grown under above-optimum vernalization and photoperiod (that is when the response to these factors is saturated), were not exclusively due to parallel differences in the length of the vegetative phase, and the length of the reproductive phase was independent of that of the vegetative phase. Thus, it would be possible to change the relative allocation of time to vegetative and reproductive periods with no change in the full period to ear emergence. The differences in intrinsic earliness between cultivars were modified by the temperature regime under which they were grown, i.e. the difference between cultivars (both considering the full phase to ear emergence or some sub-phases) was not a constant amount of time or thermal time at different temperatures. In addition, in some instances genotypes changed their ranking for ‘intrinsic earliness’ depending on the temperature regime. This was interpreted to mean that while all genotypes are sensitive to temperature they differ amongst themselves in the extent of that sensitivity. Therefore, ‘intrinsic earliness’ should not be considered as a static genotypic characteristic, but the result of the interaction between the genotype and temperature. Intrinsic earliness is therefore likely to be related to temperature sensitivity. Some implications of these conclusions for plant breeding and crop simulation modelling are discussed.
Resumo:
The rate of leaf appearance of barley varies substantially with time of sowing. This variation has been related to both the length and the rate of change of photoperiod at the time of plant emergence. An outdoor pot experiment was conducted to test if rate of change of photoperiod directly affects phasic development and rate of leaf emergence of spring barley. Two photoperiod-sensitive cultivars (Bandulla and Galleon) were subjected to five photoperiod regimes: two constant photoperiods, of 14 and 15·5 h, and three different rates of change of photoperiod of c. 2, 9 and 13 min/day from seedling emergence to awn initiation. Photoperiod treatments significantly affected the duration from seedling emergence to awn initiation in both cultivars. Rate of change of photoperiod did not affect the rate of development towards awn initiation independently of the absolute daylength it produced. Although Bandulla had a longer duration than Galleon at any photoperiod regime, the cultivars did not vary in their sensitivity to photoperiod. When this phase was divided into the leaf initiation (LI) and spikelet initiation (SI) phases, it was evident that the sensitivity to photoperiod was not constant, being in general higher during the SI than during the LI phase. However, the magnitude of the change in sensitivity was cultivar-dependent, indicating that sensitivity to photoperiod during the different phases could be under independent genetic control. Final numbers of primordia (leaves together with maximum spikelet number) were negatively affected by increasing photoperiods, but once again, there was no evidence of any effect of the rate of change of photoperiod which was independent of the average photoperiod. Both cultivars showed similar sensitivities for final leaf number but maximum spikelet number was more sensitive to photoperiod in Galleon than in Bandulla. Highly significant linear relationships between leaf number and thermal time were found for all combinations of cultivars and photoperiod regimes (r2 > 0·98). The rate of leaf appearance (RLA) was similar for both cultivars (c. 0·0185 leaves/°Cd) and did not alter during plant development or in response to the change in photoperiod at awn initiation. The range in RLA was greater for Galleon (0·0170–0·0205 leaves/°Cd) than for Bandulla (0·0173–0·0186 leaves/°Cd). Neither of these cultivars exhibited a significant relationship between rate of leaf emergence and photoperiod or rate of change of photoperiod. The lack of significant relationships between RLA and length or rate of change of photoperiod is in contrast with previous reports using time of sowing as a main treatment.
Resumo:
Els materials de canvi de fase (PCM) han estat considerats per a l’emmagatzematge tèrmic en edificis des de 1980. Amb la inclusió dels PCM en plaques de guix, guix, formigó o altres materials que s’utilitzen per a cobrir les parets, l’emmagatzematge tèrmic pot ser part de les estructures fins i tot en edificis lleugers. Les noves tècniques de microencapsulació han obert moltes possibilitats en aplicacions per a edificis. El treball que es presenta és el desenvolupament d’un formigó innovador mesclat amb PCM microencapsulat, amb un punt de fusió de 26 oC i una entalpia de canvi de fase de 110 kJ/kg. El primer experiment va ser la inclusió del PCM microencapsulat dins del formigó i la construcció d’una caseta amb aquest nou formigó-PCM. Es va construir una segona caseta al costat de la primera amb les mateixes característiques i orientació però amb formigó convencional que serveix com a referència. Durant els anys 2005 i 2006 es va analitzar el comportament d’ambdues casetes i més tard es va edificar un mur Trombe a la paret sud de totes dues per investigar la seva influència durant la tardor i l’hivern.
Resumo:
In order to determine the penetration of the thermal wave in the papaya fruit pulp (Carica papaya L.), cv. Golden, thermal diffusivity of the pulp was obtained measuring temperature at four different depths. Measurements were carried out initially with the fruit on the first stage of maturity. The changes of the thermal diffusivity were expressed as a function of ripening. A temporal decrease of the thermal diffusivity was observed. Chemical (pH, soluble solids and total titratable acidity) and physical (pulp firmness) properties were measured as well and the results were compared to the thermal diffusivity change.
Resumo:
Monte Carlo (MC) simulations have been used to study the structure of an intermediate thermal phase of poly(R-octadecyl ç,D-glutamate). This is a comblike poly(ç-peptide) able to adopt a biphasic structure that has been described as a layered arrangement of backbone helical rods immersed in a paraffinic pool of polymethylene side chains. Simulations were performed at two different temperatures (348 and 363 K), both of them above the melting point of the paraffinic phase, using the configurational bias MC algorithm. Results indicate that layers are constituted by a side-by-side packing of 17/5 helices. The organization of the interlayer paraffinic region is described in atomistic terms by examining the torsional angles and the end-to-end distances for the octadecyl side chains. Comparison with previously reported comblike poly(â-peptide)s revealed significant differences in the organization of the alkyl side chains.
Resumo:
The structural relaxation of pure amorphous silicon a-Si and hydrogenated amorphous silicon a-Si:H materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon.
Resumo:
A variable temperature field sets exacting demands to the structure under mechanical load. Most of all the lifetime of the rotating drum structure depends on temperature differences between parts inside the drum. The temperature difference was known because of the measurements made before. The list of demands was created based on customers’ needs. The limits of this paper were set to the inner structure of the drum. Creation of ideas for the inner structure was started open minded. The main principle in the creation process was to create new ideas for the function of the product with the help of sub-functions. The sub-functions were created as independent as possible. The best sub-functions were combined together and the new working principles were created based on them. Every working principle was calculated separately and criticized at the end of the calculation process. The main objective was to create the new kind of structure, which is not based too much to the old, inoperative structure. The affect of own weight of the inner structure to the stress values was quite small but it was also taken into consideration when calculating the maximum stress value of the structure. Because of very complex structures all of the calculations were made with the help of the ProE – Mechanica software. The fatigue analyze was made also for the best structure solution.