978 resultados para tangible interaction
Resumo:
The interaction mean free path between neutrons and TRISO particles is simulated using scripts written in MATLAB to solve the increasing error present with an increase in the packing factor in the reactor physics code Serpent. Their movement is tracked both in an unbounded and in a bounded space. Their track is calculated, depending on the program, linearly directly using the position vectors of the neutrons and the surface equations of all the fuel particles; by dividing the space in multiple subspaces, each of which contain a fraction of the total number of particles, and choosing the particles from those subspaces through which the neutron passes through; or by choosing the particles that lie within an infinite cylinder formed on the movement axis of the neutron. The estimate from the current analytical model, based on an exponential distribution, for the mean free path, utilized by Serpent, is used as a reference result. The results from the implicit model in Serpent imply a too long mean free path with high packing factors. The received results support this observation by producing, with a packing factor of 17 %, approximately 2.46 % shorter mean free path compared to the reference model. This is supported by the packing factor experienced by the neutron, the simulation of which resulted in a 17.29 % packing factor. It was also observed that the neutrons leaving from the surfaces of the fuel particles, in contrast to those starting inside the moderator, do not follow the exponential distribution. The current model, as it is, is thus not valid in the determination of the free path lengths of the neutrons.
Resumo:
Emotional changes can influence feeding behavior. Previous studies have shown that chronically stressed animals present increased ingestion of sweet food, an effect reversed by a single dose of diazepam administered before testing the animals. The aim of the present study was to evaluate the response of animals chronically treated with midazolam and/or submitted to repeated restraint stress upon the ingestion of sweet food. Male adult Wistar rats were divided into two groups: controls and exposed to restraint 1 h/day, 5 days/week for 40 days. Both groups were subdivided into two other groups treated or not with midazolam (0.06 mg/ml in their drinking water during the 40-day treatment). The animals were placed in a lighted area in the presence of 10 pellets of sweet food (Froot loops®). The number of ingested pellets was measured during a period of 3 min, in the presence or absence of fasting. The group chronically treated with midazolam alone presented increased ingestion when compared to control animals (control group: 2.0 ± 0.44 pellets and midazolam group: 3.60 ± 0.57 pellets). The group submitted to restraint stress presented an increased ingestion compared to controls (control group: 2.0 ± 0.44 pellets and stressed group: 4.18 ± 0.58 pellets). Chronically administered midazolam reduced the ingestion in stressed animals (stressed/water group: 4.18 ± 0.58 pellets; stressed/midazolam group: 3.2 ± 0.49 pellets). Thus, repeated stress increases appetite for sweet food independently of hunger and chronic administration of midazolam can decrease this behavioral effect.
Resumo:
Systemic innovation has emerged as an important topic due to the interconnected technological and sociotechnical change of our current complex world. This study approaches the phenomenon from an organizing perspective, by analyzing the various actors, collaborative activities and resources available in innovation systems. It presents knowledge production for innovation and discusses the organizational challenges of shared innovation activities from a dynamic perspective. Knowledge, interaction, and organizational interdependencies are seen as the core elements of organizing for systemic innovations. This dissertation is divided into two parts. The first part introduces the focus of the study and the relevant literature and summarizes conclusions. The second part includes seven publications, each reporting on an important aspect of the phenomenon studied. Each of the in-depth single-case studies takes a distinct and complementary systems approach to innovation activities – linking the refining of knowledge to the enabling of organizations to participate in shared innovation processes. These aspects are summarized as theoretical and practical implications for recognizing innovation opportunities and turning ideas into innovations by means of using information and organizing activities in an efficient manner. Through its investigation of the existing literature and empirical case studies, this study makes three main contributions. First, it describes the challenges inherent in utilizing information and transforming it into innovation knowledge. Secondly, it presents the role of interaction and organizational interdependencies in innovation activities from various novel perspectives. Third, it highlights the interconnection between innovations and organizations, and the related path dependency and anticipatory aspects in innovation activities. In general, the thesis adds to our knowledge of how different aspects of systems form innovations through interaction and organizational interdependencies. It highlights the continuous need to redefine information and adjust organizations and networks based on ongoing activities – stressing the emergent, systemic nature of innovation.
Resumo:
The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.
Resumo:
We determined the effects of losartan (40 nmol) and PD 123319 (40 nmol) (both non-peptides and selective antagonists of the AT1 and AT2 angiotensin receptors, respectively), and [Sar¹, Ala8] angiotensin II (ANG II) (40 nmol) (a non-selective peptide antagonist of angiotensin receptors) injected into the paraventricular nucleus (PVN) on the water and salt appetite, diuresis and natriuresis and mean arterial pressure (MAP) induced by administration of 10 nmol of ANG II into the medial septal area (MSA) of male Holtzman rats weighing 250-300 g. The volume of drug solution injected was 0.5 µl over a period of 10-15 s. The responses were measured over a period of 120 min. ANG II alone injected into the MSA induced an increase in all the above parameters (8.1 ± 1.2, 1.8 ± 0.3, and 17.1 ± 1.0 ml, 217 ± 25 µEq/120 min, and 24 ± 4 mmHg, respectively, N = 10-12) compared with vehicle-treated rats (1.4 ± 0.2, 0.6 ± 0.1, and 9.3 ± 0.5 ml, 47 ± 5 µEq/120 min, and 4.1 ± 0.8 mmHg, respectively, N = 10-14). Pretreatment with losartan and [Sar¹, Ala8] ANG II completely abolished the water and sodium intake, and the pressor increase (0.5 ± 0.2, 1.1 ± 0.2, 0.5 ± 0.2, and 0.8 ± 0.2 ml, and 1.2 ± 3.9, 31 ± 4.6 mmHg, respectively, N = 9-12), whereas losartan blunted the urinary and sodium excretion induced by ANG II (13.9 ± 1.0 ml and 187 ± 10 µEq/120 min, respectively, N = 9). Pretreatment with PD 123319 and [Sar¹, Ala8] ANG II blocked the urinary and sodium excretion (10.7 ± 0.8, 9.8 ± 0.7 ml, and 67 ± 13 and 57 ± 17 µEq/120 min, respectively, N = 9), whereas pretreatment with PD 123319 partially blocked the water and sodium intake, and the MAP induced by ANG II administration (2.3 ± 0.3, 1.1 ± 0.1 ml, and 12 ± 3 mmHg, respectively, N = 9-10). These results suggest the angiotensinergic effect of the MSA on the AT1 and AT2 receptors of the PVN in terms of water and sodium homeostasis and MAP modulation.
Resumo:
Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).
Resumo:
The effect of the tip clearance and vaneless diffuser width on the stage performance and flow fields of a centrifugal compressor were studied numerically and results were compared to the experimental measurements. The diffuser width was changed by moving the shroud side of the diffuser axially and six tip clearances size from 0.5 to 3 mm were studied. Moreover, the effects of rotor-stator interaction on the diffuser and impeller flow fields and performance were studied. Also transient simulations were carried out in order to investigate the influence of the interaction on the impeller and diffuser performance parameters. It was seen that pinch could improve the performance and it help to get more uniform flow at exit and less back flow from diffuser to the impeller.
Resumo:
Protein malnutrition induces structural, neurochemical and functional alterations in the central nervous system, leading to behavioral alterations. In the present study, we used the elevated plus-maze (EPM) as a measure of anxiety to evaluate the interaction between acute immobilization and housing conditions on the behavior of malnourished rats. Pups (6 males and 2 females) were fed by Wistar lactating dams receiving a 6% (undernourished) or 16% (well-nourished) protein diet. After weaning, the animals continued to receive the same diets ad libitum until 49 days of age when they started to receive a regular lab chow diet. From weaning to the end of the tests on day 70, the animals were housed under two different conditions, i.e., individual or in groups of three. On the 69th day, half of the animals were submitted to immobilization for 2 h, while the other half were undisturbed, and both groups were tested 24 h later for 5 min in the EPM. Independent of other factors, protein malnutrition increased, while immobilization and social isolation per se decreased, EPM exploration. Analysis of the interaction of diet vs immobilization vs housing conditions showed that the increased EPM exploration presented by the malnourished group was reversed by acute immobilization in animals reared in groups but not in animals reared individually. The interaction between immobilization and housing conditions suggests that living for a long time in social isolation is sufficiently stressful to reduce the responses to another anxiogenic procedure (immobilization), while living in groups prompts the animals to react to acute stress. Thus, it is suggested that housing condition can modulate the effects of an anxiogenic procedure on behavioral responses of malnourished rats in the EPM.
Resumo:
Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA) in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol) and morphine (2.2 nmol) into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh) that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10) was blocked by previous administration of atropine (0.7 nmol; N = 7) or naloxone (1.3 nmol; N = 7) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9) into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11). All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.
Resumo:
The thesis work models the squeezing of the tube and computes the fluid motion of a peristaltic pump. The simulations have been conducted by using COMSOL Multiphysics FSI module. The model is setup in axis symmetric with several simulation cases to have a clear understanding of the results. The model captures total displacement of the tube, velocity magnitude, and average pressure fluctuation of the fluid motion. A clear understanding and review of many mathematical and physical concepts are also discussed with their applications in real field. In order to solve the problems and work around the resource constraints, a thorough understanding of mass balance and momentum equations, finite element concepts, arbitrary Lagrangian-Eulerian method, one-way coupling method, two-way coupling method, and COMSOL Multiphysics simulation setup are understood and briefly narrated.
Resumo:
The successful implantation of the blastocyst depends on adequate interactions between the embryo and the uterus. The development of the embryo begins with the fertilized ovum, a single totipotent cell which undergoes mitosis and gives rise to a multicellular structure named blastocyst. At the same time, increasing concentrations of ovarian steroid hormones initiate a complex signaling cascade that stimulates the differentiation of endometrial stromal cells to decidual cells, preparing the uterus to lodge the embryo. Studies in humans and in other mammals have shown that cytokines and growth factors are produced by the pre-implantation embryo and cells of the reproductive tract; however, the interactions between these factors that converge for successful implantation are not well understood. This review focuses on the actions of interleukin-1, leukemia inhibitory factor, epidermal growth factor, heparin-binding epidermal growth factor, and vascular endothelial growth factor, and on the network of their interactions leading to early embryo development, peri-implantatory endometrial changes, embryo implantation and trophoblast differentiation. We also propose therapeutical approaches based on current knowledge on cytokine interactions.
Resumo:
Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.
Resumo:
Type 2 diabetes mellitus is a systemic disease characterized by intolerance to glucose and peripheral resistance to insulin. This endocrine disease affects fundamental mechanisms of the central nervous system and jeopardizes the balance of vital functions such as the cardiovascular and circadian rhythm. The increased prevalence of metabolic disorders in our society is aggravated by endemic voluntary postponement of bedtime and by the current sedentary lifestyle, leading to epidemic proportions of obese people. Diabetes and chronic loss of sleep share the fact that both affect millions and one is detrimental to the other. Indeed, sleep deficits have marked modulatory effects on glucose metabolism and insulin sensitivity and foster metabolic syndrome that culminates in sleep disorders like restless syndrome and sleep apnea, which in turn lead to poor sleep quality. We examine the hypothesis that these two worldwide emerging disorders are due to two interlinked cycles. In our paradigm, we establish an intimate relationship between diabetes and sleep disturbances and postulate possible mechanisms that provide support for this conjecture. In addition, we propose some perspectives about the development of the reciprocal interaction between predictor components of metabolic syndrome and sleep disturbances that lead to poor sleep quality. The ability to predict the development and identify or associate a given mode of sleep disturbance to diabetes would be a valuable asset in the assessment of both. Furthermore, major advances in care coupled with healthy lifestyles can ensure a higher quality of life for people with diabetes.
Resumo:
Efonidipine hydrochloride is an antihypertensive and antianginal agent with fewer side effects and is better tolerated in the treatment of hypertension with renal impairment. Its interaction with bovine serum albumin (BSA) is of great use for the understanding of the pharmacokinetic and pharmacodynamic mechanisms of the drug. The binding of efonidipine to BSA was investigated by fluorescence spectroscopy and circular dichroism. BSA fluorescence was quenched by efonidipine, due to the fact that efonidipine quenched the fluorescence of tryptophan residues mainly by the collision mode. The thermodynamic parameters ΔH0 and ΔS0 were 68.04 kJ/mol and 319.42 J·mol-1·K-1, respectively, indicating that the hydrophobic interactions played a major role. The results of circular dichroism and synchronous fluorescence measurements showed that the binding of efonidipine to BSA led to a conformational change of BSA. The fraction of occupied sites (θ) for the 8-anilino-1-naphthalein-sulfonic acid (ANS)-BSA system is 85%, whereas for the NZ-105-BSA system, it is 53%, which suggests that the interaction of ANS with BSA is stronger than that of NZ-105 with BSA. Binding studies in the presence of ANS indicated that efonidipine competed with ANS for hydrophobic sites of BSA. The effects of metal ions on the binding constant of the efonidipine-BSA complex were also investigated. The presence of metal ions Zn2+, Mg2+, Al3+, K+, and Ca2+ increased the binding constant of efonidipine_BSA complex, which may prolong the storage period of NZ-105 in blood plasma and enhance its maximum effects.
Resumo:
Estrogen has multiple effects on lipid and lipoprotein metabolism. We investigated the association between the four common single nucleotide polymorphisms in the estrogen receptor 1 (ESR1) gene locus, -1989T>G, +261G>C, IVS1-397T>C and IVS1-351A>G, and lipid and lipoprotein levels in southern Brazilians. The sample consisted in 150 men and 187 premenopausal women. The women were considered premenopausal if they had regular menstrual bleeding within the previous 3 months and were 18-50 years of age. Exclusion criteria were pregnancy, secondary hyperlipidemia due to renal, hepatic or thyroid disease, and diabetes. Smoking status was self-reported; subjects were classified as never smoked and current smokers. DNA was amplified by PCR and was subsequently digested with the appropriate restriction enzymes. Statistical analysis was carried out for men and women separately. In the study population, major allele frequencies were _1989*T (0.83), +261*G (0.96), IVS1-397*T (0.58), and IVS1-351*A (0.65). Multiple linear regression analyses indicated that an interaction between +261G>C polymorphism and smoking was a significant factor affecting high-density lipoprotein cholesterol (HDL-C) levels (P = 0.028) in women. Nonsmoking women with genotype G/C of +261G>C polymorphism had mean HDL-C levels higher than those with G/G genotype (1.40 ± 0.33 vs 1.22 ± 0.26 mmol/L; P = 0.033). No significant associations with lipid and lipoprotein levels in women and men were detected for other polymorphisms. In conclusion, the +261G>C polymorphism might influence lipoprotein and lipid levels in premenopausal women, but these effects seem to be modulated by smoking, whereas in men ESR1 polymorphisms were not associated with high lipoprotein levels.